Usability Analysis of WB-Graph tools

June 6, 2005

Presentation of the Diploma Thesis 'Formal Task Analysis of Graphical System Engineering Software Use'

Usability Analysis of WB-Graph tools – Thilo Paul-Stüve

What is Usability?

- often described as the "ease of use" (Macauley1995)
- more complete
 - ease of learning
 - ease of use
 - flexibility of use
 - effectiveness of use
 - user satisfaction with the system

The User Interface

- not just the Graphical User Interface (GUI)
- how tasks are accomplished with a machine
- what you do and how it responds (Raskin2000)

Direct Manipulation

- the user manipulates graphic representations of underlying data
- Principles (Shneiderman1982):
 - continuous representation of the object of interest
 - physical actions or labelled button presses instead of complex syntax
 - rapid incremental reversible operations whose impact on the object of interest is immediately visible

Engagement of the User

- direct engagement
 - user feels as direct actor
- indirect engagement
 - hidden intermediary who executes commands

YB-Edit

Figure 1: Program window.

add NCF	Insert Datum				
	neturn				
reindex node					
delete node	Delete				
		delete edge	Delete	add new node	Insert
Mark as Sub-Graph-Start		edit edge	Return		
Unmark Sub-Graph-Start				reindex whole graph	
•		reverse direction		rere nder graph	NUM-Enter

Figure 2: Context pop-up menus: node menu, edge menu, and canvas menu.

😑 🖯 🖸 🔀 Propertie
Path
xyz
Label
label
appty close

Figure 3: Pop-up input dialogue window.

Usability Analysis of WB-Graph tools - Thilo Paul-Stüve

Analysis Methods

Hierarchical Task Analysis (HTA)

HTA

- introduced by John Annett and Keith Duncan for training applications in 1967
- general method for task representation
- the level of detail arises from the motive of the analysis and the kind of the analysed task

HTA

- produces a hierarchy of
 - operations
 - plans
 - which must be carried out to get a task done
- examination of
 - operator's resources, constraints, and preferences
 - and their influence on human operations in attaining the system goal

Procedure of a HTA

- state the goal
- describe the goal as set of sub-operations leading to the goal and plans when to carry them out
- further description of sub-operations as set of sub-operations and plans when necessary or wanted

Goals, Operators, Methods, and Selectors Language (GOMSL)

Usability Analysis of WB-Graph tools - Thilo Paul-Stüve

GOMSL

- introduced by David E. Kieras for user interface design in 1995
- formalised version of Natural Goals, Operators, Methods, and Selectors Language (NGOMSL)
 - introduced by David E. Kieras for user interface design in 1988
 - structured natural-language notation for GOMS models with advanced support for cognition

GOMSL

- based on Goals, Operators, Methods, and Selectors (GOMS) introduced by Stuart K. Card, Thomas P. Moran, and Allen Newell for analysis of text processor use in 1983
- method to produce quantitative and qualitative predictions of single user interaction with passive and active systems

GOMSL

- serial stage architecture analysis with program like structures
- the execution times of the operations needed to achieve a goal is added up to make time predictions
- can be interpreted with GLEAN3, a software tool which does all the calculations of the analysis

The Analyses

Usability Analysis of WB-Graph tools – Thilo Paul-Stüve

HTA of WBA

- purpose:
 - determine the high level goals of YB-Edit use
 - gain an overview of the WBA method
 - data acquisition through interviews

Performing a WBA

Figure 4: Performing a WBA.

Correct the WB Graph

Figure 5: Correction of the WB Graph

Adding a Necessary Causal Factor or Node

Figure 6: Adding a node to the graph.

- high level goals of YB-Edit use were determined by analysing the task and not by YB-Edits interface
- complete process of doing a WBA is described
- can be extended (insertion of subgraphs, e.g.)

GOMSL Analysis of YB-Edit use

- purpose:
 - determine how the previously defined high level goals are accomplished using YB-Edit
 - detect possible improvement opportunities or sources of error
- case analysed: 'Friendly Fire' Deaths Traced to Dead Battery: Taliban Targeted but U.S. Forces Killed
- GOMSL model represents creation of 'Friendly Fire' graph using YB-Edit

Device Description

- the GUI
- Device Description: GUI, Program window of YB-Edit

Visual_object: Ybedit_program_window Type is window. Label is "YB-Edit".

• Device Description: GUI, Menu entry

Visual_object: Add_new_node Type is menu_entry. Label is "add_new_node".

Usability Analysis of WB-Graph tools – Thilo Paul-Stüve

Device Description

• Device Description: Node in WB-Graph

Visual_object: Node_11
Type is node.
Label is "SF-Soldiers_hit_by_2k-pound_satellite_guided_bomb".
Reference is "(3)".
Children is "2".
Child1 is "B-52_targeted_SF-Soldiers_position".
Child2 is "B-52_released_satellite_guided_bomb".
Parents is "1".
Parent1 is "Accident:_3_SF-Soldiers_died_and_20_wounded".

Device Description

• Device Description: Edge in WB-Graph

Visual_object: Edge_11-1
Type is edge.
Source is "SF-Soldiers_hit_by_2k-pound_satellite_guided_bomb".
Target is "Accident:_3_SF-Soldiers_died_and_20_wounded".

Task Description

- a sequence of tasks consisting of the previously defined high level goals
- Task Description: Task for adding a new node to WB-Graph

```
Task_item: Task4
Name is Task4.
Type is add_ncf.
Label is "SF-Soldiers_hit_by_2k-pound_satellite_guided_bomb".
Reference is "(3)".
Parent is "Accident:_3_SF-Soldiers_died_and_20_wounded".
Next is Task5.
```

Methods and Rules Description

- how the high level goals are accomplished using YB-Edit
- Method Description: Adding a no to the WB-Graph

Usability Analysis of WB-Graph tools – Thilo Paul-Stüve

- all high level goals can be reached using YB-Edit
- model consists of 34 different methods with a total of 216 steps, 2.78% are learnable
- building the 'Friendly Fire" graph took 704.95 sec

- a lot of time (40%) was spent entering text
- changing forth and back to an editor to keep the List of Facts up to date consumed 16.6% of the time

- two basic interaction forms
 - pop-up menus (indirect engagement)
 - drag & drop (direct engagement & manipulation)

- input dialog window is inconsistent in invocation and use
 - four different ways to let the window pop up, which control the state of the window
 - window has four different modes without clear signs to detect

- external program to manage the List of Facts
 - requires a lot of user interaction
 - is time consuming
 - errors due to
 - * problem of closure
 - * manual text entering

- insertion and removal of a node require a lot of manual operation
- selection is not possible, therefore only single object manipulation

New User Interface Design

Concepts

- interaction through on gesture with direct engagement & manipulation
- consistent text input
- incorporation of the List of Facts
- automation:
 - insertion of node(s)
 - removal of node(s)
 - indexing the graph

GUI Sketch

Figure 7: Sketch of a new GUI design

- model consists of 22 methods with a total of 140 steps, 5% are learnable
- building the 'Friendly Fire" graph now took 236.55 sec
- problem of closure does not occur any more

Conclusion

- combination of HTA and GOMSL/GLEAN3 was very useful to examine the use of YB-Edit in context of WBA
- experience helps and influences the quality of the models

GLEAN3 deficiencies:

- no loops can be specified
- size and position of visual objects can not be specified
- no way to control the visibility of visual objects
- only global pseudo-parameters ("variables")

YB-Edit use

- analysis showed several areas of possible optimisation
- new interface design
 - was directly based on the high level goals
 - speeds the interaction up by factor of three
 - disburdens the user in several areas
 - avoids two possible causes for problems of closure

Future Plans

Cockpit Use Analysis

- transfer concept of GOMSL analysis to analysis of cockpit use in hard real time environments (car, train, ...)
- simulate cockpit use with respect to the specified environment with a tool like GLEAN

Cockpit Use Analysis

- specify in a formal, easy to learn language:
 - the environment
 - the interface and methods to use it
 - the tasks to accomplish

Benefits

- analysis can be made at very early design stages
- specification of models in relatively short time (magnitude: man/month)
- models are reusable

Possible Application

- analyse interaction with distributed system components (car control, communication systems, navigation system, ...)
- detect
 - if demands of hard real time environment collide with cockpit interaction design
 - if demands of various components collide with each other
 - possible causes of user error

A Tool: script2graph

script2graph

- tool to convert CI- and WB-Scripts to dot, vcg, or aisee format
- supports grouping of nodes
- uses RecDescent parser module
- readable perl code, easy to customise

Example:

Figure 8: Coloured regions

Thank You!