Problems

- We have had a major engineering accident with severe consequences
- It is difficult to assess the consequences
- The accident was triggered by a common-cause failure
 - Common cause is natural: major earthquake
 - nevertheless, it is unclear how tsunamis were considered
- Difficult to assess the (engineering) events leading up to the trigger
- The engineering hazard is not unique to earthquake+tsunami
 - Most US power plants are well inland
 - The engineering risk is that of “station blackout” due to flooding
- We are here to try to solve a series of
 - social
 - engineering
 - political
- ... problems. Or at least to start.
Functional Safety Commonplaces

- Perform a Preliminary Hazard Analysis
 - Identify those phenomena which lead to damage/loss, in some causal sense of “lead”
- Perform a Risk Analysis
 - Classify the severity of each hazard/hazardous event
 - Assess the likelihood of each
- Compare with social “norms”/acceptability
- Derive likelihood constraints from analysis+acceptability
- Iterate
- (Relatively) New: write all this down in a “Safety Case”
A Specific Hazard

- Spent Fuel Pools contain thousands of tons of water
- They are on the 4th floor of the Secondary Containment (Reactor Building)
- Secondary power generation, sometimes electrical/electronic control elements, is in the basement of
- There are natural water hazards such as flash floods (from thunderstorms) and tsunamis
- Hazard: flooding make take out secondary power when needed (primary power out: common-cause failure)
 - Common-cause failures not necessarily well analysed in system safety
- ... yielding the hazard known as “station blackout”
Station Blackout

- Hazard described by, e.g., Dave Lochbaum of UCS in 1992
- Contained explicitly in his book in 1996
- There are instances of it happening!
- In Charles Perrow’s “The Next Catastrophe” (2007)
- (See Fukushima Diary pp 79-80)
- Where is it analysed in US documentation?
- Where is it in a Japanese documentation?
 - Washington Post: TEPCO assessed tsunami risk in a “single, double-sized page” in December 2001 (Fukushima Diary p 100)
- Thomas Netter: “since submarines exist they’d be able to design generators to survive [flooding]” (Fukushima Diary p 41)
Tracing back ...
 ▶ what was considered in the way of hazards
 ▶ what was known
 ▶ when
 ▶ by whom
 ▶ what happened as a result

... seems to be a matter for scholars, not for engineers, politicians or jurists

couldn’t we ensure it’s all in one place for the future?
Proposal

- That, for every safety-critical engineering entity, there be a publically-available **Safety Case**
 - cf. the plethora of documents, court applications, NRC replies, etc., concerning Diablo Canyon (*Fukushima Diary p 4*)
- Proposed in *abnormaldistribution* blog, *Fukushima, the Tsunami Hazard, and Engineering Practice*, 27 March 2011.
- Thomas, Leveson: Resistance from industry
- Leveson: Full Safety Case not needed; HazAn suffices (SafeCrit Mailing List, 29 March 2011)
HazAn versus RiskAn

- A Safety Case involves
 - not just enumerating hazards (HazAn) but
 - assessing the risks
- RiskAn involves assessing
 - hazard severity (or ?criticality?)
 - hazard likelihood
 - likelihood that the hazard will lead to an accident (as foreseen in severity assessment)
- Can we do that here?
- There are unusual difficulties in attempting it
Severity

- Assessing the consequences
 - of the *worst-case outcome* of the hazard
 - this is usual engineering practice (see e.g., Leveson Chapter 9)
- Worst-case outcome mitigated by perceived unlikelihood
 - We can’t assess likelihood very well
 - That should - obviously - not prevent us from considering all possible outcomes
 -including the worst case
- Observe: **Fukushima was not worst-case!**
 - Worst-case might have been if Plant Manager Masao Yoshida had not ignored government instructions to stop cooling with seawater (*Fukushima Diary* p 112)
- We need to consider **Bad-Case Scenarios** as well!
Level of Damage

- Let’s consider pure cash and ignore externalities
- Commercial air
 - 7 accidents per year
 - 200m - (rare) 1bn per accident
 - → 1.5bn per year
- Oil
 - 1 major spill per 10 years
 - 10-20bn per major spill
 - → 1-2bn per year
- Nuclear power
 - 100bn every 25 years (guessing from government decisions + commentary)
 - maybe 1tr or more (Ellims)
 - → 4-40bn per year!!

Even this crudely: Nuclear is a lot worse
Other Damage

- Long-term contamination of land
 - unspecific health consequences for residents
 - unspecific effect upon foodstuff
 - unspecific consequences for consumers of that food
 - renders large areas of land unusable for the foreseeable future

- Long-term contamination of ocean
 - unspecific effect upon ocean life
 - unspecific effect upon foodstuff
 - unspecific region of contamination
 - renders ?what? ocean “unusable” for the foreseeable future?

- ? Replacement costs of generated energy?
Political Issues

- Is it really so bad?
 - Germany, Switzerland: yes
 - Japan: may very well be: yes
 - France, UK, US: no

- But UK, France, Germany, Switzerland are all next to each other
 - not to speak of Ukraine!

- Are there any political structures in place to organise decisions at the level of physical influence?
 - No
 - Not the EU (look at common “defence policy”, even NATO)
 - No near prospect of Russia and allied states joining in
Carrying On

- UK: we don’t have tsunamis, we don’t have strong earthquakes; we carry on
 - yes, but this is not merely about natural hazards
 - this is about whether engineering practices suffice
 - and whether the polity (politics; business practice; sociology of engineering organisations) suffices to implement good engineering practice
- Germany: we quit in 2022
 - but what about the waste?
 - you can’t stop engineering waste disposal for 1,000’s of years.....
- US: we carry on, but fix the things we are not good at
 - strong public-interest “watchdog” system (UCS)
 - cooperation between watchdog and regulator
 - but long-term waste disposal remains unsolved for 40 years!
Cooperation - Limited?

- US help declined for a week
 - aerial surveillance, drones
 - satellite surveillance - maybe militarily “classified”?
 - knowledge of handling meltdown event (PWR at TMI)
 - interpretation of data (e.g., over water level in SFP4, *Fukushima Diary*, p 9)

- Information politics
 - Public govt./TEPCO statements: “what we know”
 - No position taken on “possible outcomes”
 - Leads to significant difference in thinking and (re)acting! (PBL, *Fukushima Diary*, p18)
Limited Cooperation II

- Operating principle: “Avoid panicky reaction” (Seiji Shiroya, *Fukushima Diary* p 59)
 - Wolf Dombrosky, Professor for Catastrophe Management, Steinbeis-University, Berlin: “I’ve not come across mass panic in 30 years of work on catastrophe” (NW, 17 March 2011, translation PBL).

- Information asymmetry due to “slight delay” in transmission of information (Govt. spokesman Edano, *Fukushima Diary* p 10)
 - but information is (at least) two-way
 - US surveillance, interpretation, experience (TMI)
 - French nuclear emergency management
Political Attitudes

- NISA (until 12 April 2011): INES Level 4 accident (*Fukushima Diary* pp 8,56)
- French nuclear safety authority, 16 March 2011: INES Level 6 (*Fukushima Diary* p 8)
- IAEA clarification: only country of origin is able to classify
 - This is a mixed political/engineering statement
- EU Environment Minister Oettinger: “*further catastrophic events*” expected; operators “*do not have control*” (*Fukushima Diary* p 9)
- French Environment Minister Koscuisko-Morizet: “*worst-case scenario possible, even probable*” (*Fukushima Diary* p 9)
- UK Chief Scientific Officer Beddington: “*beyond that 20 or 30 kilometers, it’s really not an issue for health*” (*Fukushima Diary* p 9)
- Consider: who was right, who was wrong?
Politics of Help

- International political system is technically an anarchy of states (thanks to the Peace of Westfalia, 1648. Münster, Osnabrück)
- There are some somewhat-reliable international structures
 - EU
 - Dominant-neighbor politics
 - Engineering standardisation
 - also through limited sources of equipment (Siemens, GE,)
- But also exceptions
 - Iran
 - North Korea
 - Pakistani “rogue scientists”
Political structure does not follow environmental influence (e.g., prevailing winds)

Can engineers ever have a say at this kind of level?
 ▶ And, if so, why would we think they would be any better than professional politicians?

What about engineers who are critical?
 ▶ Not everyone follows the US NRC / UCS model

Let me move back to pure engineering
Engineering Concepts: Accident

- **Definition of term** *accident*
 - unwanted, unplanned event resulting in a specified level of loss (Leveson 1995, Ch. 9)
 - Event whose causal consequences include harm (Ladkin, Definitions for Safety Engineering, http://www.causalis.com)

- Works well for airplane accidents, rail accidents, auto accidents

- But consider Deepwater Horizon, Fukushima
 - Ongoing series of causally-related events
 - with different, often independent, intervention possibilities
 - Deepwater Horizon: captain’s decision to (not) abandon the rig was independent of the blow-out event itself
 - Fukushima: Yoshida’s decision to continue cooling with seawater was independent of meltdown/explosion events

- Conclusion: engineers need a workable definition of accident
Engineering Concepts: Severity and Loss

- **Loss** is
 - what the government pays?
 - what TEPCO pays?
 - what the insurance pays?
 - Externalities (already enumerated) possibly overwhelm these figures

- **Severity** is awaited specified loss
 - As discussed, hard to specify
 - But also, for hazard, a worst-case loss
 - We may need bad-case losses
Engineering Concepts: Hazard

- **Hazard** is
 - "A phenomenon of a system, or its environment, or both, which substantially raises risk, although the likelihood of an accident still remains less than certain" (Ladkin, op. cit.)
 - "a state ... of a system... that, together with other conditions in the environment... lead inevitably to an accident" (Leveson, 1995, Ch. 9)

- The siting of the Fukushima plant was clearly a hazard by either definition
 - when the "system" is taken to include everything inside the plant
 - which it apparently was not by the builder/operator

- Conclusion: consensus on concepts is important, to ensure that nothing spills out through the semantic cracks!
• Concepts
• Conception/conceptualisation
• Engineering and politics
• Information politics
• Help, assistance, recovery and political/administrative boundaries
• Engineering standardisation/cross-knowledge
• The Nature of the Waste (*Fukushima Diary* p 20)
• ... just some themes

Thanks for listening!