
IEC 61508-conformant software
development with SPARK

Peter Amey

Copyright © Praxis Critical Systems Limited 2005 Slide 1

Agenda

• Introductions
• Some thoughts on standards
• Static analysis
• Unambiguous languages
• Formal methods
• Putting it all together

Copyright © Praxis Critical Systems Limited 2005 Slide 2

Agenda

• Introductions
• Some thoughts on standards
• Static analysis
• Unambiguous languages
• Formal methods
• Putting it all together

Copyright © Praxis Critical Systems Limited 2005 Slide 3

Praxis HIS
• specialists in the engineering of high-integrity and

safety-critical, software-intensive systems
• delivers services by:

– provision of tools such as the SPARK Examiner
– outsourcing complete projects
– capability enhancement
– providing key consultancy

• 100+ technical staff and growing
• autonomous but part of the Altran engineering

consultancy group
• founded specifically to put engineering into software

engineering
– first software house in the world to achieve ISO 9001

certification

Copyright © Praxis Critical Systems Limited 2005 Slide 4

Peter Amey
• Chief Technical Officer at Praxis HIS
• prime author of SPARK Examiner

– 1992 onwards with Program validation Ltd
– with Praxis since 1995

• worked on wide range of critical systems projects
– avionics
– transport
– security

• aeronautical engineer, served in Royal Air Force
• worked on armament software safety and

certification at (what was then the) A&AEE,
Boscombe Down
– (UK equivalent of Erprobungsstelle 61 at Manching)

Copyright © Praxis Critical Systems Limited 2005 Slide 5

Agenda

• Introductions
• Some thoughts on standards
• Static analysis
• Unambiguous languages
• Formal methods
• Putting it all together

Copyright © Praxis Critical Systems Limited 2005 Slide 6

A confession

• I am not very interested in 61508
– despite being asked here to talk about it

• I am not very interested in DO-178B
– despite being on the committee currently

revising and updating it

• I am not very interested in Def Stan 00-55
– despite helping write it

• Here is a standard I would sign up to:

Copyright © Praxis Critical Systems Limited 2005 Slide 7

My Standard

The fitness for purpose of a
software program shall be
established by logical reasoning

Something that met this standard would
meet all of the others as well

Copyright © Praxis Critical Systems Limited 2005 Slide 8

Development for Different SILs
IEC 6 1508

 SIL1 SIL2 SIL3 SIL4
Specification Informal Informal Semi-

Formal
Formal

Prototyping R R R R
Coding HLL

Preferred
HLL Safe-

Subset
HLL

Safe-
Subset
HLL

Defensive Code - R HR HR
Static Analysis R HR HR HR
Formal Proof - R R HR
Dynamic
Testing

R HR HR HR

Performance
Testing

R R HR HR

Partial summary of IEC 61508 recommendations for SILs.

Copyright © Praxis Critical Systems Limited 2005 Slide 9

Development for Different SILs
IEC 6 1508

 SIL1 SIL2 SIL3 SIL4
Specification Informal Informal Semi-

Formal
Formal

Prototyping R R R R
Coding HLL

Preferred
HLL Safe-

Subset
HLL

Safe-
Subset
HLL

Defensive Code - R HR HR
Static Analysis R HR HR HR
Formal Proof - R R HR
Dynamic
Testing

R HR HR HR

Performance
Testing

R R HR HR

Partial summary of IEC 61508 recommendations for SILs.

Copyright © Praxis Critical Systems Limited 2005 Slide 10

What about actually doing it?
IEC 6 1508

 SIL1 SIL2 SIL3 SIL4
Specification Informal Informal Semi-

Formal
Formal

Prototyping R R R R
Coding HLL

Preferred
HLL Safe-

Subset
HLL

Safe-
Subset
HLL

Defensive Code - R HR HR
Static Analysis R HR HR HR
Formal Proof - R R HR
Dynamic
Testing

R HR HR HR

Performance
Testing

R R HR HR

Partial summary of IEC 61508 recommendations for SILs.

Copyright © Praxis Critical Systems Limited 2005 Slide 11

Agenda

• Introductions
• Some thoughts on standards
• Static analysis
• Unambiguous languages
• Formal methods
• Putting it all together

Copyright © Praxis Critical Systems Limited 2005 Slide 12

7.9 Software verification

…

7.9.2.12 Code verification: the source code shall be verified
by static methods to ensure conformance to the specified
design of the software module (see 7.4.5), the required
coding standards (see 7.4.4), and the requirements of safety
planning (see 7.3).

Copyright © Praxis Critical Systems Limited 2005 Slide 13

7.9 Software verification

…

7.9.2.12 Code verification: the source code shall be verified
by static methods to ensure conformance to the specified
design of the software module (see 7.4.5), the required
coding standards (see 7.4.4), and the requirements of safety
planning (see 7.3).

Copyright © Praxis Critical Systems Limited 2005 Slide 14

Disadvantages of Dynamic Testing
• Practical disadvantages

– takes place late in development
– hard to diagnose unexpected behaviour
– frequently a bottleneck (e.g. shared use of

test rig)
– very expensive
– significant source of project risk

• Theoretical limitations
– high levels of confidence require

mathematically infeasible amounts of
testing

Copyright © Praxis Critical Systems Limited 2005 Slide 15

Theoretical Limitations of Testing
for ultra-high reliability (<10-7 failures per hour)

• Bayesian mathematics definitively limits what we
can claim from statistical testing

• Reliability growth models cannot provide
necessary assurance

• Proofs:
– Butler & Finelli. 1993 (see references)
– Littlewood & Strigini. 1993 (see references)

Copyright © Praxis Critical Systems Limited 2005 Slide 16

Advantages and Disadvantages of Analysis

• Advantages
– can be used early in the development

process
– can establish properties that cannot be

demonstrated in any other way. e.g.
•proof of absence of run-time errors
•freedom from timing deadlocks

• Disadvantages
– can only compare artefacts (e.g. code

against specification)
– what can be achieved is limited by

precision of descriptions and notations
used

Copyright © Praxis Critical Systems Limited 2005 Slide 17

Static analysis - the catch

• We need analysis that is:
– sound

•all errors of a particular kind found
•low false alarm rate

– fast
– usable early in development

• What we can achieve depends on the
properties of the language we are analysing

• Analysis of general purpose languages
cannot achieve these goals

Copyright © Praxis Critical Systems Limited 2005 Slide 18

Agenda

• Introductions
• Some thoughts on standards
• Static analysis
• Unambiguous languages
• Formal methods
• Putting it all together

Copyright © Praxis Critical Systems Limited 2005 Slide 19

7.4.4.3 To the extent required by the safety integrity level,
the programming language selected

shall:

...

b) be completely and unambiguously defined or restricted to
unambiguously defined features;

...

d) contain features that facilitate the detection of
programming mistakes; and

...

Copyright © Praxis Critical Systems Limited 2005 Slide 20

7.4.4.3 To the extent required by the safety integrity level,
the programming language selected

shall:

...

b) be completely and unambiguously defined or restricted to
unambiguously defined features;

...

d) contain features that facilitate the detection of
programming mistakes; and

...

Copyright © Praxis Critical Systems Limited 2005 Slide 21

Unambiguous source code?

• But: all commonly used languages
allow the construction of programs
of uncertain meaning
– ambiguities

• Most also have uncheckable rules
– insecurities

Copyright © Praxis Critical Systems Limited 2005 Slide 22

Causes of Uncertainty

• Deficiencies in language definitions
– Semantics of C integer division
– Pascal named vs. structural type

equivalence

• Implementation freedoms
– term/expression evaluation order
– parameter-passing mechanisms

Copyright © Praxis Critical Systems Limited 2005 Slide 23

Example of an Ambiguity

z := F(x) + G(y);

Suppose function F modifies y as a side-effect of its
operation. In this case the meaning of the
expression depends on whether F or G is evaluated
first.

A rule stating “functions are not permitted to have
side effects” turns the ambiguity into an insecurity:
it does not solve the problem

Copyright © Praxis Critical Systems Limited 2005 Slide 24

A Simple C Ambiguity

i = v[i++];

Page 46 of the C++ Annotated Reference
Manual states that this leads to the value of i
being undefined.

Copyright © Praxis Critical Systems Limited 2005 Slide 25

A Simple Ada Ambiguity

procedure Init2(X, Y : out Integer)
is
begin
X := 1;
Y := 2;

end Init2;

What is the meaning of:

Init2(A, A);

Copyright © Praxis Critical Systems Limited 2005 Slide 26

Resolution

• Ambiguities are resolved by compiler
authors

• Insecurities are left for the user to discover

• Possible solutions
– Invent new languages without these

problems
– Work with dialects associated with

compilers
– Use logically coherent language subsets to

overcome ambiguities and insecurities

Copyright © Praxis Critical Systems Limited 2005 Slide 27

Safe Subsets

• Potentially give us the best of both
worlds:
– logical soundness and predictability
– access to standard compilers, tools,

training, staff
But
• Level of integrity achievable depends

on foundation language chosen
• Subsetting alone may not be enough

for the highest integrity levels

Copyright © Praxis Critical Systems Limited 2005 Slide 28

Constructing a Safe Subset

• Selection of base language

• Removal of the most troublesome
language features

• Limitations on the way remaining
features may be used

• Introduction of annotations to provide
extra information

Copyright © Praxis Critical Systems Limited 2005 Slide 29

The Subset Spectrum

• We can construct subsets that vary on
4 axes:
– Precision (security and lack of

ambiguity)
– Expressive power
– Depth of analysis possible
– Efficiency of analysis process

Copyright © Praxis Critical Systems Limited 2005 Slide 30

The Subset Spectrum (contd.)

• Trade-offs quite complex; we are trying to
avoid surprise: unexpected behaviour which
we don’t find until test
– removing problematic features may reduce

this risk
– increased precision may require reduction

in expressive power but improves depth of
analysis

– we may be able to combine
expressiveness with depth of analysis but
at the cost of efficiency of analysis

Copyright © Praxis Critical Systems Limited 2005 Slide 31

The Subset Spectrum (contd.)

• Fundamental trade-off is between discipline
we accept to reduce bug insertion and the
effort we are prepared to make in bug
detection

• For example:
– unrestricted C provides little or protection

from bug insertion
– Ada requires extra discipline (e.g. strong

typing) which reduces bug insertion rate
• A qualitative shift in what is possible only

occurs when precision becomes exact

Copyright © Praxis Critical Systems Limited 2005 Slide 32

SPARK

• A sub-language of Ada with particular
properties that make it ideally suited to the
most critical of applications:
– Completely unambiguous
– Free from implementation dependencies
– All rule violations are detectable
– Formally defined
– Tool supported

• SPARK subsets of both Ada 83 and Ada 95
are defined

• Language definition is open and widely
available

Copyright © Praxis Critical Systems Limited 2005 Slide 33

“… one could communicate with these
machines in any language provided it was an
exact language …”

“… the system should resemble normal
mathematical procedure closely, but at the
same time should be as unambiguous as
possible.”

Alan Turing, 1947

(lecture to the London Mathematical Society on the “Automatic Computing Engine”)

Copyright © Praxis Critical Systems Limited 2005 Slide 34

SPARK

• A sub-language of Ada with particular
properties that make it ideally suited to the
most critical of applications:
– Completely unambiguous
– Free from implementation dependencies
– All rule violations are detectable
– Formally defined
– Tool supported

• SPARK subsets of both Ada 83 and Ada 95
are defined

• Language definition is open and widely
available

Copyright © Praxis Critical Systems Limited 2005 Slide 35

Constructing a Safe Subset - SPARK

• Selection of base language
–

• Removal of the most troublesome language
features
–

• Limitations on the way remaining features
may be used
–

• Introduction of annotations to provide extra
information
–

Copyright © Praxis Critical Systems Limited 2005 Slide 36

Constructing a Safe Subset –SPARK

• Selection of base language
– ANSI/MIL-STD-1815A-1983 & ISO-8652:1995

• Removal of the most troublesome language
features
– e.g. unrestricted tasking

• Limitations on the way remaining features
may be used
– e.g. limitations on placement of exit and return

• Introduction of annotations to provide extra
information
– core (e.g. Global) and proof (e.g. Post) annotations

Copyright © Praxis Critical Systems Limited 2005 Slide 37

Why Annotations?

• Annotations strengthen specifications
– providing design-by-contract facilities

• Allows analysis without access to procedure-
bodies
– which can be done early during development
– before programs are complete or compilable

• Erroneous constructs are efficiently detected

Copyright © Praxis Critical Systems Limited 2005 Slide 38

An example (detection of erroneous constructs)

procedure Inc (X : in out Integer);

--# global in out Callcount;

detection of function side-effect
function AddOne (X : Integer)

return Integer is
XLocal : Integer := X;

begin
Inc (Xlocal);
return XLocal;

end AddOne;

detection of aliasing
Inc (CallCount);

Copyright © Praxis Critical Systems Limited 2005 Slide 39

SPARK supports static verification

• These methods can ensure:
– freedom from language misuse
– freedom from data and information flow

errors
– freedom from run-time errors
– specified safety properties are guaranteed

• Source is robust and contains few errors
• Source can be:

– directly host-tested
– directly cross-compiled to target
– used to generate alternate language

Copyright © Praxis Critical Systems Limited 2005 Slide 40

Example: run-time error proof
type T is range 0 .. 100;

procedure Inc (X : in out T)
--# derives X from X;
is
begin

X := X + 1;
end Inc;

procedure_inc_1.
H1: true .
H2: x >= t__first .
H3: x <= t__last .

->
C1: x + 1 >= t__first .
C2: x + 1 <= t__last .

Unsimplified verification condition

Copyright © Praxis Critical Systems Limited 2005 Slide 41

Example: run-time error proof
type T is range 0 .. 100;

procedure Inc (X : in out T)
--# derives X from X;
is
begin

X := X + 1;
end Inc;

Simplified verification condition
procedure_inc_1.
H1: x >= 0 .
H2: x <= 100 .

->
C1: x <= 99 .

Can’t be
proved -
problem!

Copyright © Praxis Critical Systems Limited 2005 Slide 42

Solutions
type T is range 0 .. 100;

procedure Inc (X : in out T)
--# derives X from X;
is
begin

if X < T’Last then
X := X + 1;

end if;
end Inc;

Defensive
programming

type T is range 0 .. 100;

procedure Inc (X : in out T)
--# derives X from X;
--# pre X < T’Last;
is
begin

X := X + 1;
end Inc;

Logical guard

Copyright © Praxis Critical Systems Limited 2005 Slide 43

SPARK Results - C130J - Lockheed
• “Very few errors have been found in the

software during even the most rigorous levels of
FAA testing, which is being successfully
conducted for less than a fifth of the normal
cost in industry”

• “This level A system was developed at half of
typical cost of non-critical systems”

• Productivity gains: X4 on C130J compared to
previous safety-critical projects, X16 on C27J
with re-use and increased process maturity

• SPARK code was found to have only 10% of the
residual errors of full Ada and Ada was found to
have only 10% of the residual errors of C

Copyright © Praxis Critical Systems Limited 2005 Slide 44

Agenda

• Introductions
• Some thoughts on standards
• Static analysis
• Unambiguous languages
• Formal methods
• Putting it all together

Copyright © Praxis Critical Systems Limited 2005 Slide 45

IEC 61508: Software Detailed Design

0: none
1: structured methodology

(CORE, JSD, MASCOT, Yourdon)
2: + semi-formal methods

(function block diagrams,
data-flow diagrams, pseudo code)

3: + formal methods (VDM, Z, CCS, CSP,
HOL, OBJ, LOTOS, Petri nets,
state transition diagrams)

4: + formal proof to establish conformance
to software requirements specification.

Copyright © Praxis Critical Systems Limited 2005 Slide 46

IEC 61508: Software Detailed Design

0: none
1: structured methodology

(CORE, JSD, MASCOT, Yourdon)
2: + semi-formal methods

(function block diagrams,
data-flow diagrams, pseudo code)

3: + formal methods (VDM, Z, CCS, CSP,
HOL, OBJ, LOTOS, Petri nets,
state transition diagrams)

4: + formal proof to establish conformance
to software requirements specification.

Copyright © Praxis Critical Systems Limited 2005 Slide 47

What about actually doing it?

0: none
1: structured methodology

(CORE, JSD, MASCOT, Yourdon)
2: + semi-formal methods

(function block diagrams,
data-flow diagrams, pseudo code)

3: + formal methods (VDM, Z, CCS, CSP,
HOL, OBJ, LOTOS, Petri nets,
state transition diagrams)

4: + formal proof to establish conformance
to software requirements specification.

Copyright © Praxis Critical Systems Limited 2005 Slide 48

Formal Methods

• Rumours of the death of Formal Methods
are much exaggerated:
– we successfully use them
– our customers successfully use them
– they fit perfectly with SPARK and

Correctness by Construction
• Only mathematically-based approaches

offer the promise of bug prevention rather
than bug detection

Copyright © Praxis Critical Systems Limited 2005 Slide 49

Some evidence

Serious error found,
model checking adopted

FormalCheckHDLC

Formal spec. is “official”.
Informal spec. abandoned

RSMLTCAS

ITSEC E6. Formal spec
adopted by customer

Z, Ada, C++,
SQL, SPARK

MULTOS
CA

00-55, “proof more cost-
effective than testing”

Z, SPARKSHOLIS

Dramatic rise in quality
and productivity

CORE, SPARKC130J

10 year warranty,
exceptionally trouble free

VDM, CCS, CCDIS

Copyright © Praxis Critical Systems Limited 2005 Slide 50

Agenda

• Introductions
• Some thoughts on standards
• Static analysis
• Unambiguous languages
• Formal methods
• Putting it all together

Copyright © Praxis Critical Systems Limited 2005 Slide 51

Correctness by Construction

• Formal specs, unambiguous languages and
static analysis all help improve code quality
and reliability

• If we use all of them and:
– focus on bug prevention
– use techniques that find bugs early
– regard final testing as demonstration of correct

behaviour rather than method of finding bugs

then a wonderful synergy occurs:
– we get higher quality at lower cost
– we achieve Correctness by Construction

Copyright © Praxis Critical Systems Limited 2005 Slide 52

Low defects at high productivity rates
• Typical defect rate in industry is > 5 defects per KLOC
• Typical productivity rate in industry is < 10 LOC per day
• Sample Praxis rates (for deployed, certified code, including

all lifecycle phases and management overhead):

28<0.135,000SIL 0Aircraft test set2002

CC EAL 5+

ITSEC E6

SIL 4

SIL2

Integrity

70.2227,000
Helicopter landing

system
1997

2003

1999

1992

Year loc/day
Defect/

ksloc
SizeProject

10,000

100,000

197,000

0.00

0.04

0.75

38Secure biometrics

29
Smart card

security

13ATC display

Copyright © Praxis Critical Systems Limited 2005 Slide 53

Industry-beating Software Defect Rates

Average Defect Density of Delivered Software

0
1
2
3
4
5
6
7
8

CMM
Level 1

CMM
Level 2

CMM
Level 3

CMM
Level 4

CMM
Level 5

C By C

CMM data from Jones, Capers:
Software Assessments, Benchmarks, and Best Practices.

Reading, MA: Addison-Wesley, 2000

D
ef

ec
ts

/K
LO

C

Copyright © Praxis Critical Systems Limited 2005 Slide 54

How? The Cost of Not Finding Errors

Relative cost
of error

correction

1 5 10
20

50

200

0

50

100

150

200

quire
ments

Desig
n

Code

Unit T
est

tance
 Test

aintenance

Source:Leffingwell
http://www.rational.com/media/whitepapers/roi1.pdf

<50% >50%50% 50%<50% >50%<20% >80%
Acce

pRe M

Time spent:

Copyright © Praxis Critical Systems Limited 2005 Slide 55

Metrics (from smart card project)
eliminating errors immediately after introduction

Specification 0
57

14
38

23
4

1

Architecture

Design

Code

Developer Test

Customer Test

Operation

3

8
4

1

0
0

0

9
18

3
0

0

117
115

60
0

00
0

0

A low-cost
error

A high-
cost error

Copyright © Praxis Critical Systems Limited 2005 Slide 56

My Standard

The fitness for purpose of a
software program shall be
established by logical reasoning

DONE!
And it is wholly 61508 compliant as a free

bonus!

Copyright © Praxis Critical Systems Limited 2005 Slide 57

and finally

“Real life problems are those
that remain after you have
systematically failed to apply
all the known solutions”

Edsger Dijkstra, 1973

Copyright © Praxis Critical Systems Limited 2005 Slide 58

Any questions?

Copyright © Praxis Critical Systems Limited 2005 Slide 59

Praxis Critical Systems Limited
20 Manvers Street
Bath BA1 1PX
United Kingdom
Telephone: +44 (0) 1225 466991
Facsimile: +44 (0) 1225 469006
Website: www.praxis-cs.co.uk

www.sparkada.com

Email: peter.amey@praxis-his.com

Copyright © Praxis Critical Systems Limited 2005 Slide 60

Resources
• Cook, David. Evolution of Programming Languages and Why a

Language Is Not Enough to Solve Our Problems. Crosstalk Dec 99. pp
7-12
(http://www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1999/12/cook.asp)

• Amey, Peter. Correctness by Construction - Better Can Also be
Cheaper. Crosstalk March 2002 pp 24 -28. (http://www.praxis-
his.com/pdfs/c_by_c_better_cheaper.pdf)

• ISO/IEC JTC1/SC22/WG9. Programming Languages - Guide for the
Use of the Ada Programming Language in High Integrity Systems.
(www.dkuug.dk/jtc1/sc22/wg9/n359.pdf)

• German, Andy, Software Static Code Analysis Lessons Learned.
Crosstalk Nov 2003. pp 13-17.
(http://www.stsc.hill.af.mil/crosstalk/2003/11/0311German.pdf)

• Hall, Anthony and Chapman, Roderick: “"Correctness By Construction:
Developing a Commercial Secure System“, IEEE Software, Jan/Feb
2002, pp18-25 (http://www.praxis-his.com/pdfs/c_by_c_secure_system.pdf)

• King, Steve; Hammond, Jonathan; Chapman, Rod and Pryor, Andy: "Is
Proof More Cost Effective Than Testing?”, IEEE Transactions on
Software Engineering, Volume 26 Number 8 (http://www.praxis-
his.com/pdfs/cost_effective_proof.pdf)

Copyright © Praxis Critical Systems Limited 2005 Slide 61

Resources (contd.)
• Butler, Ricky W., and George B. Finelli, eds. “The Infeasibility of

Quantifying the Reliability of Life-Critical Real-Time Software.” IEEE
Transactions on Software Engineering 19(1): 3-12.
(http://shemesh.larc.nasa.gov/paper-nonq/nonq-paper.pdf)

• Littlewood & Strigini“Validation of Ultrahigh Dependability for Software-
based Systems”.. CACM Nov 1993
(http://www.csr.city.ac.uk/people/lorenzo.strigini/ls.papers/CACMnov93_lim
its/CACMnov93.pdf)

• Littlewood, B. “The Problem of Assessing Software Reliability.” SCSS-
2000.
(http://www.csr.city.ac.uk/people/bev.littlewood/bl_public_papers/SCSS_200
0/SCSS_2000.pdf)

• Amey, Peter. “A Language for Systems not Just Software”. ACM SigAda
2001. (http://www.praxis-his.com/pdfs/systems_not_just_sw.pdf)

• Chapman, Rod., Amey, Peter. “Industrial Strength Exception Freedom”.
Proceedings of ACM SigAda 2002. (http://www.praxis-
his.com/pdfs/Industrial_strength.pdf)

Copyright © Praxis Critical Systems Limited 2005 Slide 62

Resources (contd.)
• Amey, Peter,. and White, Neil. “High Integrity Ada in a UML and C

World”. Lecture Notes in Computer Science 3063
A. Llamosi, A. Strohmeier (Eds.): Reliable Software Technologies – Ada-
Europe 2004 9th Ada-Europe International Conference, La Palma de
Mallorca, June 2004, pp. 225-236. (http://www.praxis-
his.com/sparkada/pdfs/ada_uml_and_c.pdf)

• See also www.sparkada.com

	Agenda
	Agenda
	Praxis HIS
	Peter Amey
	Agenda
	A confession
	My Standard
	Development for Different SILs
	Development for Different SILs
	What about actually doing it?
	Agenda
	
	
	Disadvantages of Dynamic Testing
	Theoretical Limitations of Testingfor ultra-high reliability (<10-7 failures per hour)
	Advantages and Disadvantages of Analysis
	Static analysis - the catch
	Agenda
	
	
	Unambiguous source code?
	Causes of Uncertainty
	Example of an Ambiguity
	A Simple C Ambiguity
	A Simple Ada Ambiguity
	Resolution
	Safe Subsets
	Constructing a Safe Subset
	The Subset Spectrum
	The Subset Spectrum (contd.)
	The Subset Spectrum (contd.)
	SPARK
	SPARK
	Constructing a Safe Subset - SPARK
	Constructing a Safe Subset –SPARK
	Why Annotations?
	An example (detection of erroneous constructs)
	SPARK supports static verification
	Example: run-time error proof
	Example: run-time error proof
	Solutions
	SPARK Results - C130J - Lockheed
	Agenda
	IEC 61508: Software Detailed Design
	IEC 61508: Software Detailed Design
	What about actually doing it?
	Formal Methods
	Some evidence
	Agenda
	Correctness by Construction
	Low defects at high productivity rates
	How? The Cost of Not Finding Errors
	Metrics (from smart card project)eliminating errors immediately after introduction
	My Standard
	and finally
	Resources
	Resources (contd.)
	Resources (contd.)

