
Specifying with TLA+

Formal Specification and Analysis of AFDX
Redundancy Management Algorithms

Jan Täubrich

9. Bieleschweig-Workshop zum Systems Engineering
15-05-2007

Specifying with TLA+ 9. Bieleschweig-Workshop 1 / 29



Specifying with TLA+

Outline

Outline

1 Introduction

2 Specifying the Algorithms

3 Specifying the Oracle

4 Experiences

Specifying with TLA+ 9. Bieleschweig-Workshop 2 / 29



Specifying with TLA+

Introduction

Outline

1 Introduction

2 Specifying the Algorithms

3 Specifying the Oracle

4 Experiences

Specifying with TLA+ 9. Bieleschweig-Workshop 3 / 29



Specifying with TLA+

Introduction

Motivation

Modern Airliners use the all-electronic-fly-by-wire technology

Increased demand for bandwidth and reliability required new
avionic bus

For economic reasons off-the-shelf-technologies shall be
explored

Research resulted in AFDX founding on IEEE 803.2 Ethernet

Specifying with TLA+ 9. Bieleschweig-Workshop 4 / 29



Specifying with TLA+

Introduction

Facts about AFDX

Profiled network with star topology of maximum 24 end
systems

Full duplex to overcome unpredictable delay of ethernet

Deterministic point-to-point communication through Virtual
Links

Allocated bandtwith for each Virtual Link

AFDX can be run with 10 Mbps or 100 Mbps

Redundant network scheme increases reliability and
availability

Specifying with TLA+ 9. Bieleschweig-Workshop 5 / 29



Specifying with TLA+

Introduction

Redundant network scheme

Transmit Receive

Network B

Network A

End System End System

Figure: Concept of redundant networks

Specifying with TLA+ 9. Bieleschweig-Workshop 6 / 29



Specifying with TLA+

Introduction

Redundancy Management Task

Defining the task for the redundancy management.

1 The redundancy management shall not submit redundant
frames to the application layer.

2 Furthermore, the redundancy management shall preserve the
order of the delivered frames. Hence, if the network is
perfectly preserving the order the redundancy management
shall do this as well.

Specifying with TLA+ 9. Bieleschweig-Workshop 7 / 29



Specifying with TLA+

Introduction

Location of Redundancy Management

End System

Redundancy
Management

Eliminate
redundant frames

Netw. Mgmt

Application

Network B

Integrity Checking

Detect and eliminate

invalid frames

Integrity Checking

Detect and eliminate
invalid frames

Network A

Figure: Placement of redundancy management.

Specifying with TLA+ 9. Bieleschweig-Workshop 8 / 29



Specifying with TLA+

Introduction

Sequence Numbers

Each frame contains a sequence number. For these sequence
numbers we define:

SN CNT =def 28, to be the number of sequence numbers

SN MAX =def SN CNT − 1, to be the maximum sequence
number

SN HALF =def SN CNT/2, to be the mid sequence number

Consecutive frames have sequence numbers as follows:
SN(fi+1) =def SN(fi ) + 1 mod SN CNT

Specifying with TLA+ 9. Bieleschweig-Workshop 9 / 29



Specifying with TLA+

Introduction

Operations on Sequence Numbers

To sort out redundant and outdated frames, one needs to
determine the order of sending. Thus subtraction of sequence
numbers is defined as:

s1 −SN s2 =def ((s1 − s2 + SN HALF ) mod SN CNT )− SN HALF

The comparison operators are defined in the obvious way, using the
above defined subtraction.

Specifying with TLA+ 9. Bieleschweig-Workshop 10 / 29



Specifying with TLA+

Introduction

Building the Algorithms

With the definition of the Sequence Number Skew (SNS) and the
Sequence Number Offset SNO alone 6 algorithms were proposed.
The Sequence Number Skew of frame f is

SNS(f ) =def RSN(f )−SN RSN(PTN(f )).

Respectively the Sequence Number Offset is

SNO(f ) =def RSN(f )−SN PASN(f )

Specifying with TLA+ 9. Bieleschweig-Workshop 11 / 29



Specifying with TLA+

Introduction

Algorithm Examples

Although quite similar the following algorithms differ in their
behaviour for a remarkable number of scenarios.

1 Accept frame f if SNS(f ) > 0

2 Accept frame f if SNO(f ) > 0

3 Accept frame f if max(SNS(f ), SNO(f )) > 0

4 Reject frame f if SNS MIN ≤ SNS(f ) ≤ 0

5 Reject frame f if SNS MIN ≤ SNO(f ) ≤ 0

6 Reject frame f if last two points are satisfied together

Specifying with TLA+ 9. Bieleschweig-Workshop 12 / 29



Specifying with TLA+

Specifying the Algorithms

Outline

1 Introduction

2 Specifying the Algorithms

3 Specifying the Oracle

4 Experiences

Specifying with TLA+ 9. Bieleschweig-Workshop 13 / 29



Specifying with TLA+

Specifying the Algorithms

Non-Functional Requirements

Each proposed algorithm shall satisfy the following properties:

1 The algorithm shall be easy to understand.

2 It shall allow certification.

3 It shall allow verification with acceptable effort.

4 And finally shall enable cost effective implementation.

Specifying with TLA+ 9. Bieleschweig-Workshop 14 / 29



Specifying with TLA+

Specifying the Algorithms

Functional Requirements

There were 18 functional properties devided into 4 parts.

Saftey - requirements on handling of redundant and outdated
frames

Liveness - requirements on the advance of the system

Quality - requirements on the systems’s availabilty in case of
two operating networks

Availability - requirements on the system’s availability in case
of one faulty network

Specifying with TLA+ 9. Bieleschweig-Workshop 15 / 29



Specifying with TLA+

Specifying the Algorithms

Requirement Example

The following example shows the liveness formula

Liveness ∆= ∀ 〈id , pos〉 ∈ deliverable :
∨ enabled 〈extAcceptFrame(id , env .frames[id ][pos][SN ], pos)〉v
∨ enabled 〈extRejectFrame(id , env .frames[id ][pos][SN ], pos)〉v

Figure: Specification of liveness in TLA+.

Specifying with TLA+ 9. Bieleschweig-Workshop 16 / 29



Specifying with TLA+

Specifying the Algorithms

Specifying the Algorithms

Each algorithm may perform one of the following tasks:

Accept the incoming frame

Reject the incoming frame

Optionally wait until a timeout occurs

Specifying with TLA+ 9. Bieleschweig-Workshop 17 / 29



Specifying with TLA+

Specifying the Algorithms

Example

Accept frame if frames are available and (SNS(f ) > 0 or SNO(f ) > 0)

acceptFrame(id , sn) ∆=
∧ ∨ snSkew [id , sn] > 0 ∨ snOffset [sn] > 0
∧ rm ′ = [rm except !.rsn = sn, !.paf = sn, !.ptn[id ] = sn]

Reject frame if frames are available and SNS(f ) < = 0 and SNO(f ) < = 0

rejectFrame(id , sn) ∆=
∧ snSkew [id , sn] ≤ 0 ∧ snOffset [sn] ≤ 0
∧ rm ′ = [rm except !.rsn = sn, !.ptn[id ] = sn]

Figure: Decision specification in TLA+

Specifying with TLA+ 9. Bieleschweig-Workshop 18 / 29



Specifying with TLA+

Specifying the Algorithms

Next Step Definition

Step of Redundancy Management

RM Next ∆= ∃ 〈id , sn〉 ∈ networks × (0 . . SN MAX ) :
acceptFrame(id , sn) ∨ rejectFrame(id , sn)

The RM shall react on each frame

RM Fairness ∆= ∧WF〈rm〉(RM Next)

RM Spec ∆= InitRM ∧2[RM Next ]〈rm〉 ∧ RM Fairness

Figure: Composed specification formula

Specifying with TLA+ 9. Bieleschweig-Workshop 19 / 29



Specifying with TLA+

Specifying the Oracle

Outline

1 Introduction

2 Specifying the Algorithms

3 Specifying the Oracle

4 Experiences

Specifying with TLA+ 9. Bieleschweig-Workshop 20 / 29



Specifying with TLA+

Specifying the Oracle

Write Things Once
TLA+ provides module instantiation to allow single specification
of the environment.

module ENV
constants
networks, set of networks

SN CNT , SN MAX , SN HALF , maximum sequence number

MCFL, maximum number of consecutive frame loss

MTF , maximumb number of transient frames

A, B , SN , TAG just for convenience

variables
rm, Redundancy Management

env , Environment including the redundant networks

out , forwarded “frames”

status debugging

instance RMA11 with SNS MIN ← MTF load instance of RMA

1

Specifying with TLA+ 9. Bieleschweig-Workshop 21 / 29



Specifying with TLA+

Specifying the Oracle

Environment Send and Receive

accept frame:

extAcceptFrame(id , sn, pos)
∆
=

∧ acceptFrame(id , sn)
∧ env ′ = [env except

!.frames [id ] = SubSeq(@, pos + 1, Len(@)),
!.frames [TNid [id ]] =
if Len(@) ≥ Len(SubSeq(env .frames [id ], pos , Len(env .frames [id ])))

then tag [env .frames [TNid [id ]],
SubSeq(env .frames [id ], pos , Len(env .frames [id ])),
env .frames [id ][pos ][SN ], id ]

else @]
∧ out ′ = out ∪ {env .frames [id ][pos ]}
∧ status ′ = “accept”

reject frame:

extRejectFrame(id , sn, pos)
∆
=

∧ rejectFrame(id , sn)
∧ env ′ = [env except

!.frames [id ] = SubSeq(@, pos + 1, Len(@)),
!.frames [TNid [id ]] =
if Len(@) ≥ Len(SubSeq(env .frames [id ], pos , Len(env .frames [id ])))

then tag [env .frames [TNid [id ]],
SubSeq(env .frames [id ], pos , Len(env .frames [id ])),
env .frames [id ][pos ][SN ], id ]

else @]
∧ unchanged 〈out〉
∧ status ′ = “reject”

Specifying with TLA+ 9. Bieleschweig-Workshop 22 / 29



Specifying with TLA+

Specifying the Oracle

Marking of Frames I

Frames must be marked as redundant or old.
Let N1 be a non-empty network and f a frame in N1, located at
n ∈ {1, . . . , Len(N1)}. It can be deduced that the twin frame of f
is still pending on the second network N2 if and only if

Len(SubSeq(N1, n, Len(N1))) ≤ Len(N2). (1)

More precisely, given networks N1 and N2 with
Len(N1) ≤ Len(N2), we know that, selecting frame at position
0 < k ≤ Len(N1) from network N1, its twin frame on network N2

is located at position l for which holds:

Len(SubSeq(N1, k, Len(N1))) = Len(SubSeq(N2, l , Len(N2))) (2)

Specifying with TLA+ 9. Bieleschweig-Workshop 23 / 29



Specifying with TLA+

Specifying the Oracle

Marking of Frames II

tag [seq1 ∈ Seq([sn : (0 . . SN MAX ), tag : {“n”, “r”, “o”}]),
seq2 ∈ Seq([sn : (0 . . SN MAX ), tag : {“n”, “r”, “o”}]),
val ∈ (0 . . SN CNT ), id ∈ networks] ∆=

if Len(seq1) > Len(seq2) then
if Head(seq1)[TAG ] = “r” then 〈Head(seq1)〉 ◦ tag [Tail(seq1), seq2, val , id ]
else 〈[sn 7→ Head(seq1)[SN ], tag 7→ “o”]〉 ◦ tag [Tail(seq1), seq2, val , id ]

else 〈[sn 7→ Head(seq1)[SN ], tag 7→ “r”]〉 ◦ Tail(seq1)

Figure: Marking algorithm in TLA+

Specifying with TLA+ 9. Bieleschweig-Workshop 24 / 29



Specifying with TLA+

Experiences

Outline

1 Introduction

2 Specifying the Algorithms

3 Specifying the Oracle

4 Experiences

Specifying with TLA+ 9. Bieleschweig-Workshop 25 / 29



Specifying with TLA+

Experiences

About the Algorithms

The originally proposed requirements did not help very well to
distinguish the algorithms

The most trivial algorithm had the best performance
concerning the safety properties

Scenario driven algorithm evolution seem to be not effecient
enough

Specifying with TLA+ 9. Bieleschweig-Workshop 26 / 29



Specifying with TLA+

Experiences

About TLA+

Compact notations keep specifications small, but are not easy
to understand for

”
newbies “

Instantiation supports
”
Write things once“principle

Untyped variables are very flexible and type invariance
properties help to keep them in the desired value ranges

Nice LATEX export

Working with strings is tiresome

Specifying with TLA+ 9. Bieleschweig-Workshop 27 / 29



Specifying with TLA+

Experiences

About TLC

Temporal formulas must be of the form �♦A or ♦�A

The
”
Contraint Problem“increases state size

Instantiation does not map constants to the instantiated
functions

Poor handling of views

Experienced to be slow for more than 106 states

Specifying with TLA+ 9. Bieleschweig-Workshop 28 / 29



Specifying with TLA+

Experiences

Thank’s for your Attention!

Your Questions?

Specifying with TLA+ 9. Bieleschweig-Workshop 29 / 29


	Outline
	Introduction
	Specifying the Algorithms
	Specifying the Oracle
	Experiences

