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Abstract

Human error in commercial aviation has recently come again to the fore in three accidents, all 
within a month of one another in February and March 2009. We focus on a take-off accident in 
Melbourne. Various tasks involved in pre-flight cockpit preparation are crucial, but vulnerable to 
error, which may be caused by such phenomena as third-party interruptions in cockpit pre-flight 
procedures, whose intensity has been remarked by pilots and recently investigated by NASA. Were 
known techniques for fault-tolerance in computing to be applied to pre-flight cockpit preparation 
and more rigorously supported by computational devices, the major possibilities for human error 
could be avoided.

Basic Flying Skills

The basics of flying aircraft are instilled in pilots from their first day of flight. Two of those basics 
are, first, to calculate the aircraft's weight, and its balance point, before flying to ensure they are 
within the range for the aircraft to remain controllable in flight, and, second, when flying to ensure 
the airspeed always remains within range (too fast, and the airplane might break apart; too slow, and 
the wing stops flying, a condition known as a “stall”).

Checking and cross-checking these basics is required, but also becomes routine. Aviators, airlines 
and regulators are all aware of the importance of these basics to safety, as well as the dangers of 
complacency and habit when executing critical but routine tasks. Three recent airline accidents, 
occurring all within a month of each other, have refocused attention on these basics, and how 
routine can go wrong.

Losing Control in Buffalo

On 23 February 2009, a turboprop aircraft of the “new generation”, a Bombardier Q400, crashed on 
approach to Buffalo airport, New York state, killing 49 people on board and 1 on the ground. The 
crew had allowed the airspeed to become too slow, and reacted to the automatic warnings 
inappropriately, putting the aircraft into a climb, which slowed it down further, instead of a descent 
to gain more flying speed. The aircraft stalled, went out of control and spun into the ground [1]. The 



U.S. National Transportation Safety Board convened a public hearing on 12-14 May 2009, which 
concentrated on studying the possible factors which could have led the crew to behave as they did.

Failing to Cope in Amsterdam

Two days later, the crew of a Turkish Airlines Boeing 737-800 jet on final approach to Amsterdam's 
Schiphol airport similarly allowed their airspeed to become too low, and although they initially 
reacted appropriately by putting the engines to full power, they did not ensure that the engines 
remained at full power: indeed, the aircraft's automation reduced the power back to idle thrust 
without the crew correcting, and the aircraft stalled, impacting farmland short of the runway. 9 of 
the 135 occupants were killed, including the three crew. Here, though, a faulty instrument, a radio 
altimeter, and the reaction of the airplane's autothrottle system to the faulty radio altimeter, played a 
role. The radio altimeter is one of two on board and is active when the aircraft is relatively close to 
the ground, to measure its height above the ground. The aircraft also has three barometric altimeters 
which are used to measure altitude throughout flight. The faulty radio altimeter had also 
malfunctioned during previous flights of the aircraft, and Boeing manuals (specifically, the 
“Dispatch Deviations Guide”) say that the autothrottle is not to be used during approach and 
landing when the radio altimeter is malfunctioning. The reasons for this requirement become clear 
from the accident. At about 2000 ft above the ground on the approach, the faulty radio altimeter 
suddenly registered that the aircraft was on the ground. The autothrottle system read that data, went 
into “RETARD” mode and retarded the throttles to idle. As the airspeed became lower, the aircraft's 
warning systems activated and the throttles were advanced to full power (one presumes, by the 
crew, but this is not yet definitively established). However, the crew did not ensure the power 
remained at full: the throttles came back to idle power (one may presume due to the autothrottle, in 
RETARD mode, retarding the throttles, but this is not yet definitively established), and the aircraft 
descended and slowed still further. The autothrottle disconnected (or was disconnected). At 420 ft 
above the ground, the crew attempted a full recovery, putting throttles back to full and pitching 
down, but the aircraft was already too low to effect the recovery and hit the ground during the 
attempt [2]. Unlike the Buffalo accident, in which the crew apparently lost control of a perfectly-
functioning aircraft, this accident involves malfunctioning systems which were not effectively 
handled by the crew. The accident was not inevitable. The crew had had some indication earlier in 
the approach that there was some malfunction – some warnings had sounded, indirect indications, 
but it appears the crew did not correctly diagnose their significance. Also, a similar malfunction of 
the radio altimeter had obviously been handled effectively by crews on previous flights of the 
aircraft. Some major airlines require as Standard Operating Procedure on this airplane, and some 
other pilots simply as a regular precaution, that at least one pilot has hisher hands permanently on 
the throttle levers at low altitude, precisely to ensure that the power is set, and stays set, as the pilots 
want it. Had the accident crew done this and ensured the engines stayed set at full power, their 
initial recovery would have sufficed and they would likely have proceeded to a routine landing. The 
investigation by the Dutch Safety Board will want to know how and why the malfunction was not 
logged on previous flights and the aircraft dispatched on the accident flight without registering with 
the crew the manufacturer's restriction that the autothrottle was not to be used for approach and 
landing. The Safety Board will also want to determine as far as possible why, after the crew's initial, 
correct, reaction to dangerously low airspeed, the crew did not ensure that the recovery continued as 
it should have done, but allowed the aircraft to revert to its previous, dangerously low airspeed 
condition, at a lower altitude with no margin for a second recovery. They will also be looking at the 
design of the automated systems and their interactions with other systems as well as with the pilots.

Scraping the Dirt in Melbourne

A third accident occurred in Melbourne, Australia on 20 March, 2009. A long-range Airbus A340-
500 of Emirates Airlines almost failed to get airborne on its trip to Dubai. The aircraft, with 275 



people on board, became airborne only after it had overrun Melbourne's Runway 16 and left traces 
in the grass at the end, partly demolishing some low-lying radio equipment belonging to the 
runway's Instrument Landing System. Unknown to the crew at that point, the aircraft's rump had 
scraped the ground hard as it pitched up for takeoff (a so-called “tailstrike”), removing some of the 
fuselage skin, dislodging the flight data recorder, and distorting the rear pressure bulkhead, a 
structural member essential for pressurising the cabin during high-altitude flight. Immediately after 
becoming airborne, the crew assessed the situation, and returned for landing after dumping fuel. 
During their assessment, they discovered incorrect data had been entered for the weight of the 
aircraft on the laptop computer they had used per procedure to calculate their final take-off 
parameters, most importantly the speed at which to pitch the aircraft upwards on take-off (the 
“rotation speed”), and the engine power required to get the aircraft airborne at that speed on that 
runway [3]. The aircraft landed and everybody deplaned normally, some somewhat shaken, but not 
all fully aware that they had been involved in what could have been Australia's worst-ever aviation 
accident. The extent of the damage to the rear fuselage became clear on inspection, and the 
Australian Transportation Safety Board, who were called, duly classified the event as an accident. 
Because of the incorrect data entry, the aircraft had used too little engine power on its takeoff roll, 
and was rotated at too low an airspeed, which creates extra wind resistance (“drag”) and inhibits 
acceleration further. The crew had reacted correctly and promptly to not lifting off. The captain put 
the throttles to full takeoff power (significantly more power than is normally used during flight, and 
limited to a few minutes' use only) and the aircraft belatedly became airborne. It became apparent, 
again, to observers just how little time and space is available for a crew to react to problems on 
takeoff.

Pre-Flight Calculations

The entry error was significant. The ATSB says an entry error corresponding to 100 tonnes was 
made [3]. Since the empty weight of the aircraft is over 200 tonnes and the full weight under 400 
tonnes, it follows that an error was made in the leftmost position of the number representing the 
weight (normally entered in kilogrammes); that instead of using the (correct) take-off weight of 
somewhat over 360 tonnes, the pilot calculating the performance data on the laptop computer had 
typed a “2” for a “3” and inadvertently entered 260 tonnes. This difference of 100 tonnes represents 
some 27% reduction of the total weight of the airplane during the power and rotation-speed 
calculation. No wonder that the airplane couldn't lift off at the computed speed! Such errors are not 
unknown, and there are procedural checks intended to catch such errors. How this erroneous value 
made it through the multitude of these checks will be a topic the investigators are expected to look 
at very closely.

Other Recent Weight Miscalculations

Entering the wrong take-off weight into the flight management computer is a known hazard, In 
March 2003, a Singapore Airlines Boeing 747 suffered a tailstrike on departure from Auckland 
airport, similarly the consequence of an undetected data-entry error for the weight, similarly 100 
tonnes too light [4]. In Halifax, Nova Scotia, a Boeing 747 freighter operated by MK Airlines 
crashed on take-off on 14 October, 2004. The crew had apparently used a lower thrust setting and a 
lower rotation speed than what they needed – a symptom of an incorrect data entry for aircraft 
weight. The take-off performance data were usually computed by airline crews using a laptop 
computer (the “Boeing Laptop Tool”, BLT). Direct evidence was hard to come by, since much had 
been destroyed during the accident. The Canadian investigators concluded that incorrect weight 
data entry into the BLT, and failure to recognise the weight and performance values as incorrect, 
were likely [5]. Whereas Singapore Airlines is recognised generally in the industry as having 
superior safety performance, the Canadian investigators were concerned about the apparently 
substandard safety performance history of MK Airlines.



Securing the Basics

Similar to all three accidents is that critical basics in what was superficially a normal situation were 
misperceived by the crew. At Buffalo and Amsterdam, that basic was airspeed and its control. At 
Melbourne, it was so-called “weight and balance”. At Buffalo and Melbourne, the aircraft was 
apparently functioning perfectly. At Amsterdam, its malfunction would not normally have been
critical (or even so exceptional – many airline pilots have experienced a radio altimeter malfunction 
and coping with it is routine). At Buffalo and Amsterdam, the crew's reaction to the aircraft's 
unusual situation was not as procedures require; at Melbourne their reaction appears to have been 
exemplary. 

The major difference between the accidents is that at Buffalo and Amsterdam, the critical parameter 
was presented to the crew directly on their instruments: namely, the airspeed. It is hard to see what, 
if anything, formal analysis of procedure would have to contribute to avoiding a repetition. At 
Melbourne, the critical parameter was some number tucked away out of sight after it was entered in 
the Flight Management and Guidance Computer (FMGC). It is a mistake that would not have been 
perceptually apparent to the crew until they rotated the aircraft on take-off – and then they would 
have just a second or two to react. In contrast to the other two incidents, we gain something with 
formal procedural analysis, as follows.

Handling Critical Parameters

Those circumstances – critical parameters that are hidden from, or at best only indirectly indicated 
to, a crew in the critical flight phases of take-off and landing – have been the subject of some of our 
recent work, using our methods Ontological Hazard Analysis (OHA) [6,7,8] and Causal Flow 
Hazard Analysis (CF HazAn) [9]. The second author has successfully used OHA to analyse the 
train dispatching protocols, the verbal commands exchanged between train driver and controller to 
control train movement on railway lines which are not equipped with signalling systems, in the 
German railway laws [8]. He also developed CF HazAn to analyse the procedures for a rejected 
take-off (RTO, one of the most hazardous manoeuvres in commercial jet transport aircraft) for a 
specific widely-used commercial transport [9]. 

OHA and CF HazAn may be used for the safety analysis of complex heterogeneous systems, in 
which components may be digital-electronic, mechanical, human, and procedural. The methods are 
formal, using the languages of formal logic and theoretical computer science, and adapt techniques 
known from formal proofs of computer-program correctness.  Modern commercial aircraft can be 
considered to be systems involving mechanical and electrical/electronic/programmable electronic 
(E/E/PE) components such as flight computers and autopilots as well as human pilots. The flight 
computers and the human pilots interact to perform certain flight-critical functions. We call these 
engineered multiagent cooperative functions or EMC functions.

Consider the EMC function of calculating the take-off performance parameters. The most important 
of these are the so-called “V-speeds”: V1 , the maximum speed at which the take-off may be 
rejected; Vr ,the “rotation speed”, the speed at which the nose of the aircraft should be raised to lift 
off from the runway, and so on. Then there is the angle to which the nose of the aircraft should be 
raised upon rotation; as well as the so-called “balanced runway length”, the length of runway 
required to accelerate to take-off-reject speed, and then brake the aircraft to a stop - all, one hopes, 
on the runway. The performance parameters are affected by environmental conditions such as 
“pressure altitude” (a function of actual altitude and temperature), wind strength and direction, as 
well as by “weight and balance”, the total weight of the aircraft on take-off, and its center of 
gravity: these are “input” to the calculation of take-off performance parameters, which are “output” 



of the EMC function. The agents cooperating in this EMC function include the airline's Load 
Dispatch and Flight Dispatch departments, which calculate weight and balance from the passenger 
and fuel data as well as route data (needed to calculate the fuel required), the aircraft's Flight 
Management Computer (FMC, or as it is called on the Airbus A340 the Flight Management and 
Guidance Computer, FMGC), the pilots, the laptop computer used to perform certain computations, 
as well as various minor agents such as the refuelling agent (who must correctly inform Dispatch of 
the amount of fuel heshe has loaded). Just considering this list of who/what  is involved in the EMC 
function gives a hint of the actual complexity of the function. It is such complexity which makes a 
formal approach to analysis not only worthwhile but in our view imperative.

Inputting the Weight Parameter: A Formal Analysis Using OHA

OHA may be used here as follows. OHA formally compares three models of the critical procedures, 
the takeoff performance weight parameter entry into the FMGC (the so-called “Zero-Fuel Weight”, 
ZFW), using formal and semi-formal logic:

● the Requirement Model: pilot enters ZFW into FMGC
● the pilot's Cognitive Model: crew enters ZFW from Preliminary Flight Manifest 

(Prelim.ZFW) into FMGC; on receipt of Final Flight Manifest shortly before takeoff, crew 
enters Final.ZFW into FMGC, comparing Prelim.ZFW with Final.ZFW

● the Procedural Model: the series of specific reading and entry actions, including button-
pushes on the various devices (FMGC, laptop computer) used to get the information 
electronically (say, from Dispatch via radio data-transfer directly to the FMGC using a data 
service called ACARS), or manually (say, from a paper Operational Flight Plan by typing it 
in on the keyboard of the FMGC, or from the Flight Plan to the laptop computer, and then 
typing the parameters calculated and displayed on the laptop into the FMGC). The 
Procedural Model is very close to what is written in the Operating Manual of the aircraft.

OHA now attempts a formal proof in logic that the Procedural Model formally emulates (“refines”) 
the Cognitive Model, and that the Cognitive Model formally emulates (“refines”) the Requirement 
Model. The formal proofs are not expected to work straight away. Extra assumptions will need to be 
introduced to get them to work. If the assumptions introduced for the Cognitive Model are violated, 
then it may be that the Requirement Model is not emulated, that is, that the correct ZFW is not 
entered into the FMGC. Similarly, if the assumptions for the Procedural Model are violated, it may 
be that what the pilot thinks heshe is doing (the Cognitive Model) is not actually fulfilled by the 
steps undertaken in the Operating Manual procedures (the Procedural Model). The violated 
assumptions in the Cognitive and Procedural Models, then, represent a formally complete list of all 
the things that can go wrong when entering the ZFW into the FMGC. They may not be expressed in 
the most intuitive language, but – and we consider this to be the critical contribution of OHA over 
other methods – we can be assured that they are all there in some form. 

The procedures may be redesigned, if necessary, to reduce the assumptions, and thereby the 
possibility of their violation, to the minimum, and to introduce a specific focus on those specific 
handbook actions which are critical to maintaining the assumptions, rather than the more general 
unfocussed cautions which are found there at present.

We did not in fact perform a full OHA of this part of the take-off performance parameter 
calculation, because when setting up the analysis it became quickly evident where crucial 
weaknesses lie, as follows.

The Semi-Formal Analysis



In order to analyse how the Procedural Model might refine the Cognitive Model, we performed a 
CF HazAn of the information flow in the entry of the critical performance parameters. Software 
tools are available to check information flow, but as part of a commercial toolkit for correct-by-
construction computer program development in the computer language Ada. However, already at 
the first stage of the analysis it became evident where some hazards lie. There are two values for 
ZFW in the Cognitive Model, but the Procedural Model (drawn from the Operating Manual of the 
aircraft, for a different airline, anonymised for our use) evidently contains six or so informationally-
independent values for ZFW, that is, values that are not physically forced to be the same. There is a 
ZFW in the ACARS download, one in the FMGC which changes as one follows the procedures, one 
maybe on the paper flight plan, one transmitted verbally by the Load Dispatcher to the crew as part 
of the Final Flight Manifest, which is then written down by the crew (informationally-independent, 
for a mistake might be made), entered into the laptop (also similarly informationally-independent), 
and then read off the laptop and entered into the FMGC (also informationally-independent). Pilots 
intuitively understand which of these are supposed to be identical to Prelim.ZFW and which to 
Final.ZFW, and indeed the Manual cautions that values must be checked with care. But there are no 
specific procedures to enforce this identity, and - what aviation insiders are coming to believe might 
be crucial - there appear to be no specific ways to handle interruptions in the procedure and to 
recommence the procedures reliably after interruption. 

Such procedures, for handling “abnormal” situations such as interruptions, have been known to 
computer scientists working with so-called distributed, real-time systems for decades. Such 
abnormal situations are known as exceptions and the methods as exception handling. They include 
methods such as recovery blocks, procedures designed to tolerate exceptions through rollback to a 
recovery point: when an exception is “raised” (seen), the computation is recommenced from an 
earlier point, the nearest recovery point, whose state (the values of the critical parameter) was saved 
precisely for that purpose [10, Chapter 2].

A computer scientist analysing an EMC function may classify interruptions and distractions as 
“exceptions”, but in the pre-flight procedures of commercial transport aircraft they have been the 
norm, and have been coming recently to the attention of researchers.

Distractions are Increasingly the Norm

Commercial-aviation insiders have been commenting on the level of distractions in an airliner 
cockpit previous to departure, and there has been considerable speculation in pilot Internet forums 
about the level of distraction that might have been present before the Melbourne accident. 
Regulations generally require a “sterile cockpit” process, in which the interactions between the 
pilots are verbally choreographed and no comments are permitted which are not directly pertinent to 
the specific task being performed. But such a process does not explicitly address the interruptions 
that necessarily come during the cockpit check from maintenance services, from the ramp service, 
from cabin crew, from Load Dispatch and Flight Dispatch, and from Air Traffic Control.

Recent research by NASA Ames Reseach Center researchers Loukia Loukopolos, Immanuel Barshi 
and Robert K. Dismukes, reported at the Flight Safety Foundation European Aviation Safety 
Seminar in Nicosia, Cyprus in March 2009 found hundreds of cases in which crews forgot to carry 
out, or to complete, checks and procedures [11]. They found 55 cases in which the correct 
configuration of the aircraft for take-off was inadvertently not set, including one case with a Boeing 
737-800 aircraft at a major U.S. airport which bears some similarity to the Spanair MD-82 accident 
in Madrid on 20 August 2008, which killed 154 of 172 people on board when the aircraft failed to 
lift off the runway during take-off. The researchers proposed that the continual distractions during 
flight preparation, from the time when the crew arrived at the aircraft to commencing the take-off, 



appeared to be the common contributory factor in the incidents which they studied.

It is easy to see the significance of interruptions in these EMC functions in terms of information 
flow. An interruption breaks the flow of critical information from its initial location to its goal 
location, allowing “rogue” values to enter. Robust procedures would enforce the continuity of this 
flow, even during interruption.

Designing Robust, “Exception-Tolerant”, Procedures

We believe that our formal approach aids the design of cockpit procedures which are more tolerant 
of interruptions and the procedural failures which interruptions induce than the largely informal 
design methods which are currently used. For the case of performance parameter calculations, 
formal analysis of the information flow derived through OHA using CF HazAn indicates that 
techniques derived from fault-tolerant computer programming could be introduced, as we have 
indicated above. We give some indication here of how this can be done.

1. The five or six informationally-independent ZFW values that appear at various points in the 
current Procedural Model must be coerced into just two values in the Cognitive Model: 
Prelim.ZFW and Final.ZFW. The laptop computer used for take-off performance data 
calculation could be programmed to contain, and display in succinct fashion, the entire state 
of the computation from entry of first data (from ACARS via a network connection to the 
data transfer device, or from a data scan of the paper “load sheet”) to final data set (from the 
Final Flight Manifest). This would satisfy a principle we have identified in other work on 
EMC functions as an important evaluation criterion, and which is not satisfied by the current 
Procedural Model for take-off parameter data entry, namely the MCRPC:

● Mutual Cognisance of Relevant Parameters Criterion (MCRPC): Let the set of parameters of 
which knowledge is required to achieve a specific goal G be R. All agents cooperating to 
achieve the goal G must explicitly be cognisant of (must have cached) the true values of R 
[12].

If one is to use a Recovery-Block approach to this task, then values which are to be 
continuously displayed would be not only the true actual values, but also the values from the 
last Recovery Point.

2. The data coercion required for correct emulation of the Cognitive Model can be explicitly 
enforced through the programming of the laptop. 

3. The laptop could perform “run-time bounds checks”: it could ensure that updated values of 
quantities such as ZFW remain within reasonable bounds of previous values, and require 
specific remedial action if not. 

4. Data redundancy can be introduced and exploited. For example, the ZFW can be estimated 
from the aircraft empty weight (a constant) and the number of people on board, assuming a 
fixed average value for passenger-with-baggage. The estimated number of people on board 
can be entered at Preliminary Manifest data entry, an updated number at Final Manifest, and, 
separately, ZFW. The laptop can calculate and compare weight from ZFW and weight from 
empty+passengers as a cross check.

5. A “watchdog timeout” can be introduced for data entry to cope with interruptions in the 
cockpit: during entry of a block of data with specific procedural cross checks, if no action is 
performed by the computer user in a period of, say, 30 seconds, then the data state reverts to 



that at the last recovery point, requiring that the entire block with cross checks be reentered 
from that point. 

As mentioned above, most of these measures have been in the computer-science literature for 
decades [10]. Such measures enforce the continuity of the information flow. Indeed it would be a 
part of this formal approach to verify formally that the detailed Procedural Model emulates 
(“refines”) the Cognitive Model, including interruptions.

A Broad Conclusion

It is ironic that introduction of automation has brought with it new hazards, such as incorrect but 
largely invisible critical data, and that even more automation, such as suggested above, promises a 
partial answer. One thing seems certain: the level of automation of critical aspects of flying 
commercial aircraft, including flight and performance data entry and storage, is increasing 
inexorably. 

The recent history of software and algorithm development for critical systems has seen the informal 
methods of traditional software development yielding to mathematically more rigorous methods of 
ensuring that the system behaves as designed and intended, along with standards which encourage 
and in part require these more formal methods. We may expect the development of EMC critical 
functions to be similar - both EMC functions and software implement algorithms and a crucial 
aspect of dependability is to ensure that the implementation reflects the algorithm as intended, 
which can most satisfactorily be accomplished with formal methods. 

This note has indicated one approach to the engineering of EMC functions, using the formal/semi-
formal methods OHA and CF HazAn and how a relatively simple application of these methods 
could significantly reduce the opportunities for error in the critical function of calculating take-off 
performance parameters, even in an interruption-laden environment. Pilots should no longer be 
blamed for, nor passengers, airports and rescue crews, be subjected to the consequences of pilot 
“negligence” when it is possible for engineers to design it out.
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