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Abstract   In 2010, Rolf Spiker approached one of us with a query from a client  
concerning advisory material in IEC 61508 on the statistical evaluation of soft-
ware. We realised that there is a dearth of practical guidance for those who wish  
to evaluate critical software statistically. We believe statistical evaluation of soft-
ware is an increasingly important assurance technique. We commence with a brief  
introduction to some of the simpler statistics and then consider discursively the is-
sues which arise during evaluation.

1 Introduction

It is sometimes said that “software failures are ‘systematic’ and therefore it does 
not make sense to talk of software reliability in probabilistic terms”. It is true that 
software fails systematically, in that, if a program fails in certain circumstances, it 
will always fail when those circumstances are exactly repeated. Where then, it is 
asked, lies the uncertainty that requires the use of probabilistic models and meas-
ures of reliability?

There are  two main sources of  uncertainty.  First,  there  is uncertainty about 
which inputs, of the many possible inputs the software could receive, will result in 
failure  (of  the software to  fulfil  its  intended purpose) when executed. Second, 
there is uncertainty about which inputs the software will in fact receive in the fu-
ture as it executes: these inputs will depend upon the external operating environ-
ment, about which there will be uncertainty.

It follows from these two sources that there is uncertainty about when a pro-
gram will receive an input that will cause it to fail. Failures thus form a stochastic 
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process (a random process) as time progresses during execution of the software. 
There are some simple probabilistic models for such failure processes (as well as 
some complicated ones).  We describe these briefly and show how they can be 
used to obtain quantitative probabilistic measures of software reliability.

Because software failures occur randomly, it follows that many of the classic 
measures of reliability that have been used for decades in hardware reliability are 
also appropriate for software: examples include failure rate (for continuously oper-
ating systems, such as nuclear reactor control systems); probability of failure on 
demand (pfd) (for demand-based systems, such as nuclear reactor protection sys-
tems); mean time to failure; and so on. This commonality of measures of reliabil-
ity between software and hardware is important, since practical interest will centre 
upon the reliability of systems comprising both. However, the mechanism of fail-
ure of software differs from that of hardware, and we need to understand this in 
order to carry out reliability evaluation.

2 Simple probability models of the software failure process

In this section we outline two simple probability models that describe two com-
mon types of failure processes: a discrete-time (counting) model for on-demand 
systems,  and a  continuous-time model  for  continuously operating systems,  re-
spectively. Many software-based systems fall into one of these two classes, al-
though there are, of course, exceptions: see discussion in Section 3.

2.1 On-demand software based systems

Consider a nuclear reactor protection system (or “safety system”, as it is called; 
NRPS). An idealized view of the NRPS is that its role is to act only when the re-
actor enters a hazardous state (the “demand”), whereupon its function is to shut 
down the reactivity and keep the reactor in a safe state. Such demands upon the 
NRPS might arise because of the failure of a wider system – e.g. the continuously 
operating control system – and in a well-designed reactor they could be expected 
to be quite rare, say about once a year. A dangerous failure of the NRPS would be 
the system not responding to a legitimate demand. Part of the wider safety case for 
the reactor would contain a requirement that the probability of such a failure on 
demand (pfd) of the protection system be adequately small1.

1  For example, in the case of the UK Sizewell B reactor, this figure was 10 -7 (of which 10-3 was 
allocated to the software-based Primary Protection System (PPS), and 10 -4 to the hardware-
only Secondary Protection System (SPS), in this 1-out-of-2 configuration).
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How could such a figure be claimed with high confidence? First of all we need a 
simple model for testing and operational use of this kind of on-demand software-
based system.

We observe that there is a (probably very large) set of possible demands. Label 
these 1, 2, 3, … Selection of successive demands by the operational environment 
(i.e. the wider reactor and its environment in our example) occurs randomly and, 
we claim, independently, with Pi=Pr (demand i is selected) forming a probability 
distribution over all demands. Note that selection is not generally equi-probable 
(indeed this is usually unlikely). Each demand either results in failure, or does not. 
Define the variable:

Xi = 1 if demand i results in failure
Xi = 0 otherwise

It is easy to see that the probability of failure of a randomly selected demand is:

pfd=∑
i

Pi×X i (1)

In practice, we would not know the distribution {Pi} completely; nor would we 
know which demands cause failure, so that the {Xi} will also be unknown. It fol-
lows that (1) cannot be used to calculate pfd.

Instead, pfd can be estimated statistically from the results of operational testing, 
i.e. testing that selects the demands in exactly the same way they would be selec-
ted in operational use. Such testing is often based on simulation that uses an un-
derstanding of the physical world in which the computer-based system operates. In 
the example of a reactor protection system, this would require knowledge of the 
physics and engineering of the reactor, and of the reactor’s operational environ-
ment.

In such testing we observe a sequence of trials, each of which will result in 
either success or failure. If the trials are statistically independent, and the probabil-
ity of failure has the constant value pfd for each trial, they are called Bernoulli tri-
als. A sequence of such trials forms a particularly simple stochastic process, called 
a Bernoulli process.

There are two random variables of interest in such a process. Firstly, the num-
ber of failures in a given number, n, of successive demands. This has a Binomial 
distribution:

Pr % r  failures occur in n  demands&=% r
n & pfd r %1−pfd &n−r (2)

Secondly, the number of demands until the next failure has a geometric distribu-
tion:
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Pr(number of demands up to and including next failure = r)

= (1 – pfd)r-1 pfd 
(3)

Notice that this is true regardless of whether we count starting from a failed de-
mand, or not: the Bernoulli process is said to be memory-less.

If we observe r failures in n trials it is straightforward to compute estimates of 
pfd as a function of r and n: details can be found in any introductory text-book on 
stochastic processes, e.g. (Siegrist 2014). In particular, if we see no failures2 (i.e. 
r=0), confidence bounds for pfd can be obtained as in the Table 1. Table 1 includes 
numbers related the IEC 61508 SIL levels, taken “one-sided”. They arise from the 
mathematics of the Binomial distribution in Equation (3).

Table 1: Numbers of failure-free demands required to obtain confidence
in different pfd levels

SIL level Acceptable 
probability of 

failure

Number of 
failure-free 
demands for 
95% confid-

ence

Number of fail-
ure-free de-

mands for 99% 
confidence

SIL 1 or greater <10-1 3x101 4.6x101

SIL 2 or greater <10-2 3x102 4.6x102

SIL 3 or greater <10-3 3x103 4.6x103

SIL 4 <10-4 3x104 4.6x104

Table 1 is simply for illustration. Generally, 95% confidence can be placed in a 
claim that the pfd is smaller than 10-x if 3x10x failure-free demands have been ob-
served, and so on.

These results are based on two important assumptions, and a user needs to be 
confident that these are satisfied for hisher particular application.

First, the statistical properties of the test case selection need to be exactly the 
same as those of demand selection in operation. If the distribution of selection 
probabilities of the test cases was {Pi*}, different from {Pi}, then the probability 
of failure on demand in test will be

pfd =∑
i

P i×X i (4)

which will not be the same as pfd, (1), the probability of failure on demand in op-
eration. In such a case, estimates of the former will not be accurate estimates of 
the latter.

Second, successive demands must be independent, with constant probability of 
failure. In our illustrative example of a reactor protection system this may be a 

2  In some safety-critical industries, regulators will accept only evidence of failure-free working 
in support of pfd claims.
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plausible assumption since the demands will be far separated in calendar time. It 
seems reasonable to assume that today’s demand is not affected by the nature of a 
demand that occurred last year: i.e. knowing whether or not last year’s demand 
failed will not affect the probability that  this demand will fail, which is just the 
constant pfd.

2.2 Continuously operating software-based systems

Many software-based systems operate in continuous time. Common examples in-
clude those that control complex hardware: e.g. automobile engine control sys-
tems, fly-by-wire airplane flight control systems, nuclear reactor control systems. 
In such examples, the state of the system under control will be determined by the 
elements of a many-dimensional vector of inputs – for example, in the case of a 
reactor control system: temperatures, pressures, coolant flow rates, etc.

For continuously-operating software-based systems, the vector of inputs forms 
an evolving trajectory, or path, in the multi-dimensional input space as (continu-
ous) time passes. With this way of looking at things, software failures can be iden-
tified with regions of the input space. Call these fault regions. When the execution 
trajectory enters a fault region, a software failure occurs.

There are two sources of uncertainty, as in Section 2.1. First, there will be un-
certainty about the nature (“shape”) and location of the fault regions in the input 
space. Secondly, there will be uncertainty about the future direction an execution 
trajectory will take. Thus as time passes the occurrence of failures – points on the 
time axis – is random: it forms a continuous-time stochastic point process.

The simplest such process is called a Poisson process, and this will often be an 
accurate model of the failure process of continuously operating software-based 
systems. A Poisson process is characterised by a single parameter, λ, its  failure 
rate, measured for example in failures per hour. As in the case of on-demand sys-
tems discussed in Section 2.1, there are two random variables of interest. First, the 
number of failures in a given interval, (0,t), of elapsed time has a Poisson distribu-
tion:

Pr % r  failures occur in %0,t & &=% λt &r e−λt

r!
(5)

Second, the time to the next failure has an exponential distribution with probabil-
ity density function

λe−λt (6)

Notice that, as in the Bernoulli process, this is true regardless of whether we meas-
ure the time from a failure or not: the Poisson process is memory-less.
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We can use test data to estimate λ. If r failures have been observed in elapsed 
time t it is a simple matter to estimate λ, calculate confidence bounds, etc. Many 
textbooks give the simple details, e.g. (Siegrist 2014). As before for on-demand 
systems,  a  particularly interesting  case  for  safety-critical  applications is  where 
r=0. In Table 2 are some examples of confidence bounds based on IEC 61508 SIL 
levels.

Table 2: Numbers of failure-free hours required to obtain confidence
in different failure-rate levels

SIL level

Acceptable 
probability of 

failure per hour

Number of 
failure-free 

hours for 95% 
confidence

Number of fail-
ure-free hours 

for 99% confid-
ence

SIL 1 or greater <10-5 3x105 4.6x105

SIL 2 or greater <10-6 3x106 4.6x106

SIL 3 or greater <10-7 3x107 4.6x107

SIL 4 <10-8 3x108 4.6x108

Again, these numbers are just illustrative. Generally, if it is required to claim a 
failure rate better than 10-x, with 95% confidence, then 3x10x hours or more of 
failure-free working need to be observed; and so on.

3 Some Observations on Applicability

The advantages of using these stochastic processes for interpreting software beha-
viour in situ are threefold. First, the pertinent mathematics of these stochastic pro-
cesses are simple, clear, and well-understood - for Bernoulli processes for some 
300 years! (Bernoulli 1713). Line engineers tasked with assessing software could 
be routinely expected to develop the pertinent mathematical skills. Second, the 
key parameters are few and clear, so that it is often a straightforward matter to 
identify these key parameters in system operation and be reasonably assured one 
has them right. Third, interpretations as Bernoulli resp. Poisson processes are in-
deed often feasible in software operation. However, whilst many systems fit into 
one of these classes – on-demand systems operating in discrete time, or continu-
ously operating systems in continuous time – there are also many exceptions.

Indeed, the choice of which of the two interpretations to use can sometimes be 
a matter of convenience. Consider, for example, a safety-critical flight control sys-
tem in a civil airplane: this is obviously a continuous time system. But it may be 
convenient sometimes to treat it as a discrete time system where the measure of 
interest is probability of failure per flight. Here, a “demand” is a “flight”. A count 
of the number of demands – i.e. take-offs and landings – may better reflect the ex-
posure of the system to possible failure than calendar time, which includes hours 
spent in straight and level flight.
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In the example of a protection system used above, only failures to respond to a 
(genuine)  demand  were  considered,  and  these  naturally  form  a  discrete  time 
stochastic process in terms of the sequence of successive demands. Such failures 
are sometimes called “Type 1”, in contrast to “Type 2” failures in which the pro-
tection system incorrectly shuts down the reactor when the latter is not in fact in a 
hazardous state. Type 2 failures, in contrast to Type 1 failures, form a continuous-
time stochastic process of events in real time (i.e. clock, or calendar time). Type 2 
failures are generally less serious than Type 1 failures, and may not impinge on 
system safety, but they certainly affect system reliability. It would be reasonable to 
have probabilistic requirements for both types, necessitating the use of both of the 
probability models described in Section 2.

We have endeavoured to make clear in the examples above that the discreteness 
or continuity of time concerns the world outside the system, and not the system it-
self. Whilst it is true that computer systems themselves can be thought to operate 
in discrete time – clock cycle time – this discreteness is entirely distinct from the 
worldly discreteness in a Bernoulli process which concerns successive demands 
upon a computer-based system. There is to our knowledge no simple way (indeed 
at time of writing we do not know of  any reasonable way) to relate processor 
clock cycles to the demands in a legitimate Bernoulli process model.

Of course, not all computer system failures can be modelled by a Bernoulli or a 
Poisson process. For example, the assumption of constancy of pfd (or failure rate) 
will be violated if fault fixes are made (or attempted) when failures occur, because 
the code has changed. One would not be measuring the selfsame object after such 
a change. In such cases, it might be expected that there will be reliability growth, 
at  least  in the long run3.  More complex reliability growth models (RGMs) are 
needed to represent such situations and there is now a large scientific literature on 
problems of this kind.

However, it is questionable whether such models are appropriate for safety-crit-
ical systems. They require assumptions about the efficacy of fault-fixing that are 
difficult to justify, and thus may not produce conservative results.  The simpler 
models described here, in contrast, require that no changes are made to the system 
as failures occur and are thus guaranteed to be conservative in this respect. In fact, 
as has been remarked earlier, in many safety-critical applications there will be a 
requirement that no failures are observed.

4 Determining Success and Failure

Talking about failure relies on having some notion of successful execution and 
non-successful (that is, failed) execution of software. There are generally two no-
tions in common use when speaking about software execution.

3  Some fix attempts may not succeed. Some may introduce novel faults. But in the long run it  
might be expected that reliability will increase in spite of such reversals of fortune.

© Peter Bernard Ladkin and Bev Littlewood 2016. 
Published by the Safety-Critical Systems Club. All Rights Reserved



First is when something happens which does not conform with the expectations 
of a user of the software. What is meant here by “user” is also a fluid notion. I can 
use software without having any defined stake in its evaluation or ability to report 
on its operation, for example if I use third-party web-application software to per-
form a transaction. The term “stakeholder” might be more appropriate. When us-
ing WWW software to perform a transaction, I certainly have a stake in its (to me) 
correct operation, but it may still do things I don’t wish – and the other party to the 
transaction may wish it so. There is nothing prima facie to say who is right about 
whether the software is operating correctly. And some software may be designed 
to force a third party to use it in certain ways uncomfortable for them. It follows 
that this notion of correctness is a social construct.

Second is when there is a rigorous specification of software behaviour. A fail-
ure can be defined as a behaviour (or the outcome of a behaviour) which does not 
conform with the specification.

There are notions which transgress the boundaries of these conceptions. Say I 
have a specification, but the specification is in retrospect not quite right (which is 
often the case). There may be behaviours which may be what I want, but which do 
not conform with the inaccurate specification.

There is not space here to investigate the notion of failure of software in any 
detail. However, the statistical evaluation of software does depend on a coherent, 
deterministic notion of failure of software. One must be able to say in any given 
circumstance whether the software has failed or has not failed. In the absence of 
such a clear notion in a specific case, software cannot effectively be evaluated 
statistically using the methods we have indicated above.

5 Some Tricky Issues

None  of  the  above  says  that  interpreting  software  operation  in  situ  as  a 
Bernoulli or Poisson process is a straightforward matter. Indeed, there is a case to 
be made that the key skill for an engineer wishing statistically to evaluate critical 
software is interpretive rather than mathematical. The hard question is: are you 
sure your process really is legitimately Bernoulli, respectively Poisson?

5.1 “Easter Egg”-Type Behaviour

A major issue is that there is no useful constraining relation between the behaviour 
of the software on one set of inputs and its behaviour on another, closely related 
set of inputs.

In certain consumer software of the past (and present), programmers would oc-
casionally  include  so-called “Easter  Eggs”  (Wikipedia  2015).  When a  specific 
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combination of inputs was given, the software would cease functioning as inten-
ded and it would play a tune, or display a cute picture or greeting, or some such. 
The chosen trigger combinations were such as to be deemed to be extremely un-
likely in normal operation, so only people who “knew” could usually evoke the 
Easter Egg behaviour.

Some software used in critical applications has a “debug” or “maintenance” 
mode (DMM) which allows a user access to internal data structures in the soft-
ware. Giving the software input while in DMM results in output of interest to the 
maintainer, which will rarely be values appropriate for the critical function of the 
software. Thus this critical function will  routinely fail when the software is in 
DMM. The software is switched into DMM by a specific combination of input 
values known to the developers/maintainers (“maintainer”), but not necessarily by 
the engineer wishing to use the software in a critical application and evaluating its 
use statistically (“client”). The maintainer knows about the quasi-Easter-Egg, the 
client not.

Suppose the software has been statistically evaluated on typical in-service in-
puts. Suppose future inputs are identical to those past inputs, with the sole excep-
tion that occasionally the DMM trigger input is seen. The software will fail (to ful-
fil its intended function) each time this trigger input occurs. The software failure 
behaviour in the future application will be decisively different (worse) than has 
been seen in the evaluation. But the difference in inputs from evaluation inputs to 
future inputs is just a single one of the input values! This shows clearly that the 
condition that future inputs must be the same, and occur with the same relative 
frequency, as in the evaluation, must be taken rigorously for predictions from the 
evaluation to be realised in the future use.

5.2 Masked Dependencies

Sometimes the behaviour of software is dependent upon input parameters which 
have not been explicitly recognised. If the behaviour of these parameters is differ-
ent in the future use from that in the evaluation, then the software behaviour might 
well be different, even when the behaviour of the explicitly-recognised parameters 
stays the same.

A colleague tells of assessing a system for dependence on GPS. The developer 
assured the assessors that the software was not at all dependent on GPS signals: it 
had no function that would require location information; no such dependency had 
been deliberately implemented; indeed, an attempt had been made explicitly to 
avoid it. The software did not use library or other external functions that were 
known to rely on GPS.

The assessors brought in a GPS jammer and activated it. The software soon 
ceased to operate as intended because of the jamming. This, apparently, is not an 
uncommon occurrence (Thomas 2011, RAEng 2011).
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5.3 Version Deviations

It is commonplace that minor changes to software may result in major changes in 
behaviour. Apple’s “goto fail” bug in its TLS/SSL verification software, noted in 
February 2014 (Ducklin 2014), ensured that all WWW-site certificates were valid-
ated, no matter what their actual status as genuine or spoofed. That is a radical 
failure of intended function. However, the source code responsible was one line 
containing 11 ASCII characters that seems to have been spurious (an exact duplic-
ate of the preceding line).

Since  there  is  no  estimable  correlation  between  behaviour  of  software  and 
source-code changes, there is no way of reliably estimating the failure behaviour 
of new versions of software based on the failure behaviour of previous versions 
and the nature of the changes. If, say, SW Version 1.2 has been evaluated, and a 
minor change has been made resulting in Version 1.3, then the failure behaviour of 
Version 1.3 cannot in general be reliably estimated from the evaluation of Version 
1.2.

 It may be possible to evaluate the behaviour of Version 1.3 if an impact analys-
is can demonstrate reliably that the changes made to Version 1.2 cannot affect the 
pertinent behaviour of the software. Such analyses move outside the realm of stat-
istical evaluation and, to be performed reliably, likely involve the use of rigorous 
formal methods.

5.4 Failure Masking

Failure masking is a phenomenon often desired in fault-tolerant systems. Large 
parts  of  computer  science have been devoted towards devising algorithms and 
techniques to tolerate failures, often but not always involving component redund-
ancy.   Failures  so  tolerated  may not  be  apparent  to  the  user;  that  is,  may be 
“masked”.

This is not the phenomenon usually meant when the term “failure masking” is 
used in  statistical  evaluation of  software.  Failure  masking relevant  to software 
evaluation occurs when a software component S fails or is imminently about to 
fail, but this failure is not registered because a larger or a different component C 
fails: the failure is registered as a failure of this second component C, and the state 
of software S is not registered. If software S is about to fail, or has failed un-
noticed, then this would count for statistical evaluation as a failure of software S 
on the existing input. However, it is not registered. But is a precondition for suc-
cessful statistical evaluation of S that all failures are registered.

One of the most well-known examples of failure masking concerns the melt-
down of  a  Babcock and Wilcox 900 Pressurised Water  Reactor  (PWR) at  the 
Three  Mile  Island  Generating  Station  in  Pennsylvania,  USA,  in  March,  1979 
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(IAEA 2002). The primary coolant surrounding the reactors is itself cooled by a 
separate secondary cooling system, also water-based, and a heat-transfer mechan-
ism. The secondary cooling system had stopped circulation, so the primary coolant 
was heating up. A relief valve (called an “electromatic relief valve” by the manu-
facturers, Dresser Industries (Perrow 1984) but “pressurizer relief valve” in (IAEA 
2002), allows overheated primary coolant to overflow into a sink, relieving pres-
sure in the primary containment (the pressure vessel holding the reactor core) due 
to the overheating. Enough primary coolant should remain after venting to contin-
ue to function, so the relief valve must close when pressure has reduced appropri-
ately. The valve, however, failed to reseat and coolant continued to drain out; ulti-
mately a third of it escaped through the valve. The valve position indicator itself 
had a fault and indicated to plant controllers that the relief valve was closed, when 
it wasn’t. The failure of the indicator masked the failure of the relief valve. An an-
imated image of the sequence of events is included in the U.S. Nuclear Regulatory 
Commission “backgrounder” (USNRC 2014).

Software failure masking occurred in the incident to Malaysian Airlines Boeing 
777-200 9M-MRG in August 2005 (ATSB 2007). The software was fault tolerant, 
and, before and during the accident flight, operation of the software masked a pre-
vious failure of an air-data unit, whose erroneous values were treated as veridical 
by the primary flight control computer system, which then commanded significant 
and untoward deviations in pitch. The failure masking is considered in detail in 
(Johnson and Holloway 2007), which illustrates the difficulties that may arise in 
registering failures (of software or of hardware) accurately.

It is beyond scope here to consider failure masking in detail. Suffice it to say 
that considerable attention must be paid to its possibility where software is to be 
statistically evaluated.

5.5 Deviations from the Model

The conditions of memorylessness mentioned above are strong conditions on eval-
uation. An example is given in (Ladkin 2015) of non-memoryless behaviour in 
software with one failure condition. The particular interest of that example is that 
some  people  think  that  complex  software  such  as  real-time  operating  systems 
(RTOS) have “proved their worth” over sometimes millions of hours of “success-
ful” operation and on this basis are appropriately dependable in new critical ap-
plications. There are many problems with such assertions, in particular the possib-
ility of failure masking and version control issues mentioned above. A particular 
problem arises, though, if attempting to construe RTOS operation as a Poisson 
process for the purposes of statistical evaluation.

Suppose the RTOS has at least one failure mode. Then there is some short peri-
od of time, microseconds or milliseconds, just before such a failure when that fail-
ure becomes inevitable (for example, at the last instruction before a HALT). Let 
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such a short time period be ε. Then in that period ε the probability of failure of the 
RTOS is effectively 1. However, consider a time period of ε from start of boot-up. 
The probability of failure in this time for any reasonably well-used RTOS is ef-
fectively 0. So, for some time intervals of length ε in operation the probability of 
failure is effectively 1 and for other time intervals of the same length it is effect-
ively 0. But the memoryless property of a Poisson process requires the probability 
of failure in any time interval of length ε to be exactly the same, no matter where 
the interval occurs during an execution. It follows that the operation of an RTOS 
with at least one failure mode cannot be considered simpliciter as a Poisson pro-
cess4. This argument and associated considerations is presented in more detail in 
(Ladkin 2015).

6 Inappropriate Evaluation Attempts

The international standard for functional safety concerning systems which include 
electrical,  electronic  or  programmable  electronic  (E/E/PE)  components,  IEC 
61508, includes a short guide to statistical evaluation in Part 7, Annex D. The 
second sentence of this Annex suggests that the methods, the construal of software 
operation as a Bernoulli or Poisson process as above, can be used to evaluate soft-
ware libraries, compilers, even operating systems.

We have heard anecdotes from industrial assessors of people trying to do just 
that. For example, a client C comes to an assessor. C proposes to use a real-time 
version of an operating system to run critical software with OS+Software having a 
safety requirement of SIL 3. C claims that the operating system has more than 
enough hours without failure, for a particular safety function, to satisfy the reliab-
ility conditions for SIL 3 for that function. In particular, the function is continuous 
(rather than on-demand) and C has detailed logs of the order of 108 failure-free 
(for this function) operating hours on the software, way more than required (see 
Table 2 above). 

From the discussion above, besides the logs, C will have to show accurate re-
gistration of all failures in previous operation (and lack of such), with particular 
consideration given to possible failure masking in operation of such complex soft-
ware. C will have to address the issue of versions: are all instances of the OS, 
whose  behaviour  has  been  registered,  exactly  the  same  version?  Or  are  there 
“slight”  divergences amongst  them? And,  finally,  C must address  the issue of 
whether the software operation is indeed memoryless in the required sense. These 
are all tricky issues, but only when they have been satisfactorily addressed can C 
“plug in the numbers” from Table 2 and draw the conclusion that OS operation 
fulfils the safety requirement. Then it is incumbent upon C to argue, and to ensure, 

4 We note, though, that there are more complex ways to consider such software, some of which  
relax some of the assumptions of a Poisson process.
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that inputs to the future system have the same statistical properties as the recorded 
inputs from the past. 

It follows that “plugging in the numbers” is not at all easy.

7 Extending Evaluation Techniques

The question arises whether there are more subtle, and/or more widely applic-
able methods of evaluating software behaviour statistically than the straight con-
ceptions as Bernoulli or Poisson processes. The answer is yes. However, their ap-
plication is currently a matter on which expert statistical advice is needed. 

In many of the more sophisticated methods, the software architecture plays a 
key role. Individual behaviours of individual components of the architecture are 
statistically assessed, and the results are combined into an assessment of the whole 
architecture. In many cases, the criteria for statistical assessment of the individual 
components may be relaxed, but the combined assessment still enables the key 
Bernoulli or Poisson mathematics to be used. 

The  second author  has  devised  and  used  such  techniques,  see  for  example 
(Bedford 2001, Chapter 12). Colleagues have recently communicated the success-
ful  use  of  such  techniques  in  evaluating  critical  software  for  rail  applications 
(Schäbe 2015).  There is a recent method for assessment of  two heterogeneous 
channels, of which one may be “possibly perfect” (Littlewood 2012).

8 Conclusions: Why Use Statistical Evaluation?

In light of the discussion above, the reader may well wonder why anyone would 
bother with statistical assessment of software proposed for use in critical systems. 
There are many reasons. We give some.

Suppose a particular software-based system component has an adequate record 
of past use. Suppose, indeed, it appears informally to be the “best kit for the [new] 
task”. The safety requirements for each critical system or component are individu-
al, special to the specific system. The kit has been used before successfully to ex-
ecute a specific function, and this function may be required for the proposed new 
use. However, it may well be that the safety requirements for previous use differ 
considerably from the safety requirement for the proposed new use. It may indeed 
be that documentation of the kit does not exist sufficient to justify its inclusion “as 
new” in the proposed new use. This may well be the case if the kit was not origin-
ally intended for safety-critical use, but has established its dependability through 
experience. It may also be the case that the assessment requirements in previous 
uses were less stringent than those for the proposed new use. This could occur for 
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two reasons: one, that safety standards have changed; two, as mentioned above, 
the safety requirement may be different.

If the kit is indeed the “best kit for the task”, then there is good reason to use it. 
And there is good reason to be able to use statistical evaluation of previous use to 
make the case for its new use, if the statistics are available and adequate. A recent 
example of this industrial need has been communicated to the first author, but spe-
cific details are not available at time of writing (Kindermann 2015). We may spec-
ulate that such cases will arise more frequently, as more and more examples of rel-
atively simple and reliable E/E/PE system components for specific critical func-
tions come onto the market with time.
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