
Opinion – Taking Software Seriously

P. B. Ladkin
University of Bielefeld

Appeared in: Journal of System Safety 41(3), May-June 2005

March 29, 2005

Say you are a software house, or a company division, producing safety-
critical software for airplanes, or cars, or air traffic control, or power stations.
If you are in Europe or the Asia-Pacific region, chances are that you will have
to conform with the requirements of the international standard on functional
safety of electric/electronic/programmable electronic (E/E/PE, pronounced
”eepy”) systems. If your clients are trying to certify an aircraft, you will
have had to conform to RTCA DO178B (EA12B in Europe). Both these
standards require that, for the most critical systems, someone will have had
to demonstrate a dangerous failure rate of at most one failure in one hundred
million, respectively one billion hours of operation (the fabled ten-to-the-
minus-nine rate), for the device running your software.

Can you do it? Can you build your software to those standards? Can
you persuade others that you have done so?

There are a number of data points one could use. One is the failure rate
one can expect from faults in the delivered software. (What? You deliver
software without faults? How do you know? Are you really to be believed?
What if you started from faulty requirements? It wouldn’t be your fault,
but your code still wouldn’t do what is needed.) Another is the confidence
in the software that one can achieve through testing. (What? You test
exhaustively? You must be writing tiny programs. Or underestimating the
environment. What if the ROM containing your program gets zapped by

1



an alpha particle and an opcode bit gets flipped? Does your program still
work correctly?) A third is what you can reasonably claim as the level of
reliability or safety of your program. (Note that reliability, the ability of the
software to perform its function, is not the same as safety, that the software
will cause no harmful action to be performed.)

First, what do we know about defect rates or failure rates? A discus-
sion in early 2004 between John McDermid, Martyn Thomas, Peter Amey
and myself led to agreement that current good practice achieves a defect
rate in delivered software of less than one per delivered KLOC. Les Hatton
has achieved a failure rate in C code developed according to his stringent
”Safer C” procedures of about 0.24 per KXLOC (XLOX = executable LOC)
[Hat05]. The company Praxis High Integrity Systems, which documents its
work extensively in the scientific literature, achieved an instrumented defect
rate of 0.22 per KSLOC (SLOC = source LOC, including comments and an-
notations) on the SHOLIS shipboard helicopter landing advisory system in
1997 (size 27 KSLOC), 0.04 defects per KSLOC on the Mondex smart card
security project in 1999 (size 100 KSLOC), and comparable or lower defect
rates on more recent projects [Am05]. I know of no better results than those
of Praxis.

To summarise, if you are down to one defect per 4 KLOC, you are doing
well, but not as well as those who are down to one defect per 25 KLOC.

Second, what do we know about the efficacy of testing SW? Quite a lot.
There is a hard mathematical limit to practical testing of complex systems
with non-continuous failure modes, such as SW. You cannot breach it by
testing ”smarter”. This result was published by Bev Littlewood and Lorenzo
Strigini using Bayesian calculations, and Rick Butler and George Finelli using
frequentist calculations, in 1993 [LitStr93, ButFin93]. It disturbs me that it
is still not generally known.

Littlewood and Strigini noted that if you want to develop confidence,
through testing, that your software fails less than once every million hours
(the ”posterior probability” in Bayesian terms), you already have to start
out with that level of confidence before you test (the ”prior probability”).
How can you possibly attain that prior confidence when you know that the
very best practice only gets you down to one fault per few KLOC? Answer:
you can’t. And that goes also for rates of once-a-billion-hours.

2



To summarise, the very best statistical-testing regime will find you those
faults which lead to failure at a rate equal to or more frequent than one
hundred thousand operational hours.

How many failures are those? Edward Adams analysed statistics on de-
sign errors in IBM software as reported by customers from 1975 through
1980 [Ad84]. Fully one third of the reports concerned faults that could be
expected to result in failures less frequently than once every 60k operational
months. Consider that there are 672, 696, 720 or 744 hours in a month, and
we see that these faults lie outside the failure-frequency range of those ex-
pected to be discovered through testing. The answer to the question is that
through statistical testing you can expect to find those faults which cause
at most two-thirds of your failures. (What do you do about that remaining
one-third?)

Third and finally, what can you reasonably claim as the reliability or
safety of your program?

At this point we depart from consensus. Some organisations set a target
level of safety (TLS) and then try to demonstrate that they have or will have
achieved it. The problem with this approach lies with people such as myself
and colleagues who see a TLS setting an accident rate lower or much lower
than one per million operational hours, and set about finding mistakes in the
arguments, at which we inevitably succeed. And then some organisations
develop their systems according to rigorous development processes, such as
SEI’s Capability Maturity Model and derivatives. The problem with this
approach is that no reliable correlation has ever been demonstrated between
adherence to a development-process model and the quality of the resulting
product, no matter how much we might wish for one. And then some or-
ganisations develop their software according to rigorous mathematical-logical
procedures, measure what they have accomplished, and provide those mea-
surements as evidence in assessing how safe the product is. This approach
demonstrably eliminates whole classes of errors, provided it is efficiently in-
corporated into development procedures. There is no known technical prob-
lem with it. However, like the other two approaches, it cannot support
undemonstrable claims of ultra-low dangerous-failure rates. Best simply to
give them up.

3



Acknowledements

Thank you Martyn Thomas and Harold Thimbleby for helpful comments on
a draft.

References

Ad84 Edward N. Adams, Optimizing Preventive Service of Software Prod-
ucts, IBM Journal of Research and Development 28(1):2-14, January
1984. Available from
www.research.ibm.com/journal/rd/281/ibmrd2801B.pdf

Am05 Peter Amey/Praxis High Integrity Systems, IEC 61508-conformant
Software Development with SPARK, the Fifth Bieleschweig Workshop
on System Engineering, Munich, Germany, April 2005. Presentation
slides available from www.rvs.uni-bielefeld.de−→ Bieleschweig Work-
shops −→ Fifth Bieleschweig Workshop

ButFin93 R.W. Butler and G.B.Finelli, The Infeasibility of Quantifying the
Reliability of Life-Critical Real-Time Software, IEEE Transactions on
Software Engineering, 19(1):3-12, January 1993. Available from
techreports.larc.nasa.gov/ltrs/PDF/ieee-trans-se-19-1.pdf

Hat05 Les Hatton, personal communication, also in Designing and Imple-
menting Efficient Tests and Test Strategies, AsiaStar 2004, Canberra,
Australia 2004. Presentation slides available from www.leshatton.org

LitStr93 B. Littlewood and L. Strigini, Validation of Ultra-High Depend-
ability for Software-based Systems. Communications of the ACM,
36(11):69–80, 1993. Available from www.csr.city.ac.uk −→ Staff −→
Lorenzo Strigini −→ Papers and Abstracts −→ CACM, November
1993.

4


