Chapter 16

Specifying ATC Procedures

As suggested by the Difference Condition in Chapter 15.2, we must analyse ATC
procedures to explain what could have gone wrong. We shall specify these proce-
dues in the formal specification language TLA+, based on the tense logic TLA,
which was devised for the purpose of verifying procedures and algorithms against
their specifications. First, we undertake a superficial analysis of the procedure
which will help us formulate the TLA+ modules describing the procedures at a
somewhat high level, but one sufficient for our analysis in this example.

Expert knowledge tells us that the ATC procedures which are involved consist
of

e receiving the flight information (FI), consisting of flight plan and flight
progress data on the aircraft, from previous control facility

handling the aircraft

updating the FI

transmitting the FI to the next control facility

Additionally, there is a transmission constraint:

e the FI transmitted from the previous ATC facility is reliably (no losses;
without alteration) received by the next ATC facility

There are thus a number of state predicates to consider at each point of
progress of the flight:

(3a) ATC procedures are implemented correctly

(3b) FI is correct

(3¢) AC position and direction of flight (AC-PD) is consistent with
FI

231

232 Specifying ATC Procedures

These state predicates must be duplicated, one for each ATC facility. Thus
the state predicates for these procedures for the entire example can be partitioned
naturally into three; those for SATCC, those for LATCC and those for BATCC:

(31) SATC procedures are implemented correctly
(32) FI is correct at SATC
(33) AC-PD is consistent with FI at SATC
(La) LATC procedures are implemented correctly
(Lb) FI are correct at LATC
(Lcy AC-PD is consistent with FI at LATC
(Ba) BATC procedures are implemented correctly
(Bb) FI are correct at BATC
(Bc) AC-PD is consistent with FI at BATC

We must also make the connection (again, this is ezpert knowledge) amongst
the FI at the three centers:

{SLtrans} FI from SATC are transmitted without change to LATC
{LBtrans} FI from LATC are transmitted without change to BATC

and each of these processes can be further decomposed:

[SLhuman] FI from SATC are correctly entered by SATC controller
for transmission to LATC

[SLchannel] FIfrom SATC are transmitted reliably (no loss, no change)
over the channel to LATC

[LBhuman)] FI from LATC are correctly entered by LATC controller
for transmission to BATC

[LBchannel] FI from LATC are transmitted reliably (no loss, no
change) over the channel to BATC

The main task of formal specifications' is to describe entities and their inter-
actions in a completely unambiguous manner. The descriptions are written in a
language that has a well defined semantics, so the specification can be compared
against — or executed by — a machine or computer program. The logic EL that
we shall use for proving correctness and relative sufficiency of the WBA is an
extension of TLA, thus ensuring TLA+ may be used for specifying procedures in
the WBA itself.

'We are not concerned about informal specifications in this work. These are documents
written in an (often natural, and therefore unprecise) language, readable by humans, but less
useful for technical implementations we intend to achieve.

16.1 Introducing TLA+ 233

It is a straightforward exercise to write TLA+ modules ATCproc, which de-
fines a generic ATC handling of ‘flight slips’, and ATCtrans which defines the
transmission of FI from one ATCC to another, as in (3a), (3b), (3¢). Thus one
may write a TLA+ specification which defines the complete handover sequence
from SATC, LATC to BATC (with MATC as a correct alternative), which in-
cludes the ATCproc for SATC, LATC and BATC, and ATCtrans for SATC-to-
LATC and for LATC-to-BATC and LATC-to-MATC. These TLA+ modules are
to be found in Section 16.2. The formulas defining the relevant state predicates
and the way they are modified when correct or false data are entered and trans-
mitted lead to an expression of the specification contained in these modules as a
TLA predicate-action diagram, a PAD. But first we must introduce the temporal
logic specification language TLA+.

16.1 Introducing TLA-+

We aim to give just enough information about TLA+ to enable the reader to
understand the modules we write and how they are used. This explanation does
assume a basic knowledge and facility with the symbolism of first-order logic
and data structures roughly equivalent to what one would pick up from a dis-
crete mathematics course for computer science students. For a more thorough
introduction to TLA and TLA+, we suggest [Lad97], which is intended to give
a gentler introduction than the original [Lam94c|; further information on TLA+
can be found in [Lam96], [Lam97] and [Blu97].

Like every formal language, TLA+ has a well-defined syntax and semantics.
A TLA-+ specification is organized as a collection of modules with a well-defined
appearance. We will discuss module AT Ctrans (figure 16.1), since it uses most
of the TLA+ features we need.

The module is delimited from other modules by bars on top and bottom. The
top bar contains the module’s name. Between these bars the body of the module
is placed. The body is a list of statements, where a statement can be a declara-
tion, a definition, an assumption or a theorem. To improve readability, we also use
horizontal lines (midbars) to mark a separation of module parts. These midbars
are purely decorative and do not have any formal meaning. Every part of the
module may be given a name at will. Some of these names have meaning (namely,
those identical with the classes of statements just mentioned), and some do not.
The five parts of the module ATCtrans are named DECLARATIONS, AS-
SUMPTIONS, PREDICATES, ACTIONS and DEFINITION. Of these,
PREDICATES and ACTIONS are actually types of DEFINITION. We in-
troduce them for readability, to separate state predicates and actions, which are
otherwise distinguishable by their syntax. But formally they are just types of
DEFINITION.

A specification in TLA+ defines a process (or state machine to computer

234 Specifying ATC Procedures

scientists) which has a state, consisting of an assignment of value for each of
its variables. The state changes as time progresses. This change is taken to be
discrete, but this is no restriction since continuous change can easily be modelled
[Lam93b]. What is it that changes? The values that the variables have. These
values are all taken to be sets (as defined by axiomatic first-order set theory,
also known as Zermelo-Fraenkel set theory or ZF) because all data types can
satisfactorily be defined as sets, and it has been argued that dealing just with
sets makes logical life a lot easier.

Let us think of a state as a ‘snapshot’ of the state of the world. Then we can
show how the world changes by continually taking snapshots, arranging them
in an unending series (because time is unending — well, relatively speaking) and
comparing pairs of snapshots to see what has changed. Thus the following picture,
in which our ‘snapshots’ are curiously round instead of square:

Such an entire sequence of snapshots is called a behavior. A TLA+ specifi-
cation module is a description in logic which behaviors either satisfy or not. It
defines, in other words, a set of behaviors, namely those behaviors which satisfy
it, and thus distinguishes these behaviors from those others which do not.

In order to compare across snapshots, we must be able to identify things
in more than one snapshot. Things which persist across snapshots, but which
may change value or attributes as they do so, are called variables. Things which
must stay the same are called constants. But one should observe that constants
are in fact mathematical variables, in that they have determinate but (usually)
unspecified values in a behavior. For example, ChannelSize is a constant in
ATCtrans. We do not know its value, but this value remains the same in all states
of a behavior. In contrast, the variable channel, which is a sequence of messages
that have been sent and not yet received, has different values in different states:
messages are sent in various states and received in later states of the behavior,
and what’s ‘in’ the channel is constantly changing.

But back to syntax. Constants or variables must be declared to be such
in the DECLARATIONS part of a TLA+ module. All constants/variables
must be declared before being used. The DECLARATIONS part also contains
statements concerning which other previously-defined modules are to be included
(by either extends statements or instance statements) in the current module.
The extends statement functions just like a macro: the named module’s contents
are simply to be included as they are, right there in the current module. One can

16.1 Introducing TLA+ 235

think of it as an instruction to remove the extends statement and replace it by
the contents of the named module. In contrast, an instance statement changes
names of definitions, variables and constants. We shall explain instance later.

The PREDICATES part contains definitions of state predicates, which are
expressions in first-order logic — actually ZF set theory — containing constants
and variables. The ACTIONS part contains definitions of actions: expressions
of ZF set theory containing not only constants and variables but also primed
variables.

The meaning of a state predicate is straightforward. In a given state (snap-
shot), the predicate is either true or false, given the values of its variables in that
state. The story for actions is a little more complicated. Actions are actually
binary relations on states — that is, a definition of an action is a comparison be-
tween two states which contain the same variables. The values of those variables
in the first state are represented by the (unprimed) variables, and the values
in the second state of the pair being compared are represented by the primed
variables. Thus an action definition such as

=z+1

is a true comparison between two states just in case the value of z in the second
is 1 greater than the value of z in the first. (We leave the question of what z + 1
is when z is any set to the set theory textbooks to explain — it is well-defined!).

The actions in ATCtrans are send and receive actions for messages, defined
in the standard computer-science manner, using notation for operations on se-
quences (which come in the module Sequences, which ATCtrans extends, but
which we don’t include here). So Send(msg) is a definition parametrised by the
symbol msg (that means that in any use, the symbol msg has to be quantified
or to be substituted by a variable, constant or expression), which says that msg
is a member of the set Messages (Messages is a constant), that the length of the
sequence channel (i.e., the number of elements it contains) must be less than the
constant ChannelSize, and that the value of the channel after is the value before,
with the new message concatenated at the end (that is what channel o (msg)
means). The Receive action requires that the channel is not empty, and it re-
moves an element from the head of the channel (this is what occurs when the new
value of channel is the Tail of the old — the Tail operator just yields the previous
value with the first element missing. This requires that the previous sequence
actually have a first element to be removed — this being the point of specifying
that it be non-empty).

The manner in which we write the conjunction, as a ‘bulleted list’, verti-
cally aligned with the conjunction sign before each element of the list, aids the
readability of complex logical formulae, as argued in [Lam94al. It is a form of
pretty-printing for logical formula. Indentation takes the place of parentheses,
and the conjunction and disjunction symbols are placed before conjuncts and
disjuncts to distinguish them.

236 Specifying ATC Procedures

The final definition part defines SomeAction as being either a Send or Receive
action, and defines Safety as being a formula that is Init conjoined with a formula
involving SomeAction. The Init subformula is straightforward — it was defined
earlier in the module to mean that the channel is empty. The formula [A];, where
f is a state function (a variable or a term involving variables), is defined to mean
AV (f" = f), that is, either A, or f remains the same. So [SomeAction|cpannel
means SomeAction V (channel’ = channel), which says that either SomeAction
is true or channel doesn’t change value. The symbol O means ‘always’, which
means ‘at every step’ in the future. (We shall also later use the symbol <,
‘eventually’, which can be defined as —O-: OA, A eventually comes to pass, if
and only if —~O—-A, it is not the case that A is always false.) In other words,
O[SomeAction] channer means that ‘at every step in the future, either SomeAction
occurs or channel doesn’t change value’. This defines the behavior of the process.
A process satisfying this formula Safety must start with an empty channel, and
then after that either adjacent states are identical (channel’ = channel), or they
are related by SomeAction, i.e., either by a Send of some message, or by a Receive.
So that says that every change in the variable channel in a behavior that satisfies
the formula Safety must be caused by a Send as defined, or by a Receive as
defined. The purpose of the entire module, then, is expressed in the formula
Safety — that is how things are supposed to work according to this module.

Back to the Assumptions. These are exactly what they say they are. The
assumptions must be fulfilled in any behavior that satisfies the module. For
example, no specification (no instance of the module) corresponds to a case in
which the ChannelSize is 0; or in which the not-a-message L pressages 15 in fact a
Message; or in which a msg is not a pair.

The formula Safety contains a specification of what is known as a safety prop-
erty of behaviors. It constrains the behavior step by step into only changing in
specified ways. Behaviors can also exhibit liveness properties. A liveness prop-
erty says roughly that something will eventually happen, but it doesn’t say when.
Any arbitrary set of behaviors can in fact be characterised as the conjunction of
a safety property with a liveness property [AS85]. The usual liveness properties
included in TLA specifications are those of Weak Fairness and Strong Fairness.
We don’t appear to need liveness properties to handle this example — although
the ATC procedures should maybe include some liveness properties, it doesn’t
seem to change the outcome of the analysis. Liveness properties are logically
complex to handle, so we’d just as soon not deal with them here, and refer the
interested reader to [Lad97].

We shall need to use the module-inclusion operator instance in other mod-
ules, so we explain the various different versions of it. Basically, instance is like
extends in that it brings definitions across, but unlike in that it doesn’t bring
declarations. So the variables and constants in the definitions must be declared
in the current module; or they may be syntactically substituted by variables and
constants that are declared in the current module. Furthermore, the definition

16.2 Physical Subsystems 237

names are prepended with the name of the module instance they are associated
with. This allows one to instantiate, say, three versions of the same module,
and the definitions of each will be distinguished by their names. The versions of
instance are:

* “instance modulelist”
adds the declarations and definitions, not assumptions and theorems, from
the module(s) of modulelist to the current module. (See module Land-
ing_Norms for example.)

* “instance modulename z; < expri, ... , Ty < expry’
adds the declarations and definitions from module modulename to the cur-
rent module and assigns to each symbol z; (where 1 < z; < k) a definition
of symbol expr;. Therefore expr; must be a defined symbol of module
modulename.

* “symbol £ jinstance modulename T1 ¢ expri, ... , Tp < expry’

is the same as the statement above, except that it defines symbols symbol.z;
instead of z;. This is useful if a module is included more than once to obtain
separate copies of the same specification (e.g. to guarantee the same type
of behaviour for several components — see module This_ATCcomm_history
for example).

16.2 Physical Subsystems

Since the considerations in Chapter 15.2 suggested that a possible error during
handling or during the transmission of flightdata between the air traffic control
centers (called a handoff in aviation terminology) may be a key cause of the
incident, we shall focus on the function of the communication systems.

16.2.1 Inter-ATC Communication

We write specifications of the ATC handoff procedures as TLA+ modules using
first-in-first-out (FIFO) channels to handoff between air traffic control centers
(ATCCs) and using sets to represent the data (the “flight slips”) of flights being
handled within a specific ATCC, as required in TLA. Module ATCtrans (Figure
16.1) in the previous section defines the basic actions on the lowest system level.
An ATCC is connected to the world by a channel. It can send data to this channel
or receive data when it is available from the channel. These definitions of actions
are insufficient at this level to characterize the whole communication system.
However they can be used by modules specifying a more sophisticated level of
the system. So we define a hierarchy of modules enhancing the system (and

238 Specifying ATC Procedures

getting closer to reality) step by step. This hierarchy is illustrated in figure 16.2,
and is defined using the instance and extends definition facilities of TLA+.

Module AT Cproc (figure 16.3) introduces a storage, in which an ATCC stores
messages it gets from a channel or which should be sent to a channel. The former
is defined by action Download, the latter by action Upload(fid). The definitions of
these actions use Send(msg) and Receive from the instantiated module AT Ctrans.
In ATCproc assumptions are made that the channel can contain at least one
message and that all messages are valid. “To be valid” in this context means
that all messages in scope have the form “(fid, fdata)”. An upload of a message
with a particular flight ID (fid) to the channel is possible only if this message
is currently present in the storage. It is removed from the storage as soon as
the message is transmitted. A message can be downloaded only if the maximal
storage size is not exceeded.

We have so far specified the upload and download actions one ATCC can
perform. To establish communication between ATCCs, at least two ATCCs need
to be included in the specification; and so we instantiate ATCproc twice (once
for each ATCC) in the next module and define a Handoff action (Figure 16.4).

In principle, we now have everything we need to explain the communication
between ATCCs. However, to use the specification for the proof of possible errors
concerning the actions defined, we need to specify under which circumstances we
interpret an action to be executed incorrectly. To differentiate the case in which
the Handoff was performed correctly from that in which it was not, we introduce
a history variable. The purpose of a history variable is to record a part of a state
for ‘posterity’, as it were. In figure 16.5 we present the module ATCcomm_history
using the variable persistent_data to state whether the data during handoff were
changed or not. We intend that persistent_data is a record containing the fid and
flight data of the aircraft (AC) whose data is transferred currently (whether it is
precisely such a thing, or whether it can be something else, will depend on the
use we make of it in the module). We define the handoff to be executed correctly
if the history variable remains unchanged. Intuitively one would argue vice versa:
The fact that the data has not changed allows us to assume that it was trans-
ferred correctly. Similarly we define an action to be incorrect if the value of the
history variable changes during execution. To be able to differentiate between
these two possibilities, we have split the Handoff action into Handoff corect (T, y)
and Handoﬁincorrect (-’1;; y)

Finally, we define the possible communications between the three ATCCs
involved in this incident. See the module This_ATCcomm._history in Figures 16.6
and 16.7. Since three ATCCs are involved, we define three instances of the module
ATCcomm_history with a complete initialized set of variables, one for for each
ATCC. Including a fourth copy of ATCcomm_history by an extension statement
avoids redefining the history variable and assumptions.

This completes the definition of (correct and incorrect) ATC handoff pro-

16.2 Physical Subsystems 239

cedures, and we shall now see how to use them in the analysis of the incident,
using TLA Predicate-Action Diagrams, a form of transition diagram defined using
logical formulas.

240 Specifying ATC Procedures

| module ATCtrans

DECLARATIONS
extends Naturals, Sequences
CONSTANTS ChannelSize, Messages, 1 aessages, MSg
VARIABLE channel

ASSUMPTIONS
ASSUME ChannelSize > 0
ASSUME L pegsages ¢ Messages
ASSUME msg € Messages = 3 fid, fdata : msg = (fid, fdata)

PREDICATES
Init = channel = ()

ACTIONS
Send(msg) = A msg € Messages
A Len(channel) < ChannelSize
A channel' = channel o {msg)
Receive = A channel # ()
A channel' = Tail(channel)

DEFINITION
SomeAction = V Imsg : Send(msg)
V Receive
Safety = A Init
| A O[SomeAction] channe

Figure 16.1: Sample Module AT Ctrans

16.2 Physical Subsystems 241

extended by
module ATCtrans ‘

@ @ instantiated by

module ATCproc

Vg

module ATCcomm

¥

module ATCcomm_history

$ J0g

module This_ATCcomm_history

Figure 16.2: Hierarchy of ATC Communications Specifications

242 Specifying ATC Procedures

| module ATCproc

DECLARATIONS
extends Naturals, Sequences
CONSTANTS ChannelSize, StorageSize, Messages, L pessages, MSG
VARIABLES storage, channel
ATCtz = instance ATCtrans

ASSUMPTIONS
ASSUME ChannelSize > 0
ASSUME L pessages ¢ Messages
ASSUME msg € Messages = 3 fid, fdata : msg = (fid, fdata)

PREDICATES
Init = A channel = ()
A storage = ()

ACTIONS
Upload(fid) = 3!msg € storage : A msg[l] = fid
A storage’ = storage \ {msg}
N ATCtz.Send(msg)
Download = A |storage| < StorageSize

A storage' = storage U { Head(channel)}
N ATClz.Receive

DEFINITION
SomeAction = V Imsg : Upload(msg)
V Download
Safety = A Init
A D[SomeACtion]stomge,channel

Figure 16.3: Module AT Cproc

16.2 Physical Subsystems 243

| module ATCcomm

DECLARATIONS
extends Naturals, Sequences
CONSTANTS ChannelSize, StorageSize, Messages, 1 aessages, MSG
VARIABLES z, vy, z_ATCdata, y_ATCdata, storage, channel
X_ATC = instance ATCprocwith storage <+ x_ATCdata
Y_ATC = instance ATCprocwith storage «+ y_ATCdata
Vars = (z,y,z_ATCdata, y_ATCdata, channel)

ASSUMPTIONS
ASSUME ChannelSize > 0
ASSUME L pessages ¢ Messages
ASSUME msg € Messages = 3 fid, fdata : msg = (fid, fdata)
ASSUME z,y € {SATC, BATC,MATC,LATC,...}
ASSUME 3 !msg € x_ATCdata : msg[l] = fid

PREDICATES
Init = A fid € valid_fids
A channel = ()
A z_ATCdata = ()
A y_ATCdata = ()

ACTIONS
Handoff (z,y) = A X_ATC.Upload(fid)
N Y_ATC.Download

DEFINITION
Safety = A Init
| A D[Handoﬁ(x, y)]Vars

Figure 16.4: Module ATCcomm

244 Specifying ATC Procedures

| module ATCcomm_history

DECLARATIONS
extends Naturals, Sequences, ATCcomm
VARIABLE persistent_data
CONSTANTS dest, zdests, ydests

ASSUMPTIONS
ASSUME persistent_data|destination] = dest
ASSUME zdests N ydests # ()

PREDICATES
Init = persistent_data = z_ATCdata

ACTIONS
Handoff correct (%, y) = A persistent_data|destination] € zdests
A Handoff (z, y)
A UNCHANGED persistent_data

Handoff incorrect (T,y) = A persistent_data[destination] € ydests
A Handoff (z, y)
A persistent_data’ # persistent_data

DEFINITION
SomeAction = V Handoff correet (T, Y)
V HandOﬁincorrect (:Ea y)
Safety = A Init
A O[SomeAction]persistent_data

Figure 16.5: Module ATCcomm_history

16.2 Physical Subsystems 245

| module This_ ATCcomm_history (Partl)

DECLARATIONS
extends Naturals, Sequences
extends AT Ccomm_history
CONSTANTS ChannelSize, StorageSize, Messages, 1 aessages, MSG
VARIABLES z, ¥, storage, channel, SATCdata, LATCdata, MATCdata
SL_ATCcommhist = instance ATCcomm _history with
r_ATCdata < SATCdata,y_ATCdata <+ LATCdata,
dest < “FRA”, persistent_data < NW 052_data
zdests < {“FRA”, “BRU”, ...}, ydests < {“FRA”, “BRU”, “AMS”, ...}
LB_ATCcommhist = instance ATCcomm_history with
x_ATCdata < LATCdata,y_-ATCdata < BATCdata,
dest < “FRA”, persistent_data < NW 052_data
zdests < {“BRU”, “AMS” ...}, ydests < {“BRU”, “AMS”, ...}
LM _ATCcommhist = instance ATCcomm_history with
x_ATCdata < LATCdata,y_ATCdata < MATCdata,
dest < “FRA”, persistent_data < NW 052_data
zdests < {“FRA” ...}, ydests < {“FRA”, “TRN”, ...}

ASSUMPTIONS
ASSUME ChannelSize > 0
ASSUME L pegsages & Messages
ASSUME msg € Messages = 3 fid, fdata : msg = (fid, fdata)
ASSUME 1,y € {SATC, BATC, MATC,LATC,...}
ASSUME 3 !msg € x_ATCdata : msg[l] = fid
ASSUME “FRA” ¢ LB_ATCcommhist.ydests
ASSUME “BRU” ¢ LM _ATCcommbhist.ydests

PREDICATES
Init = A persistent_data = SATCdata
A SATCdata = ()
A LATCdata = ()
N MATCdata = ()

Figure 16.6: Module This_ AT Ccomm_history (Part 1)

246 Specifying ATC Procedures

| module This_ ATCcomm_history (continued)

ACTIONS
StoLeorrect = SL_ATCcommbist. Handoff correct (SATC, LATC)
StoLincorrest = SL_ATCcommbhist. Handoff incoprect (SATC, LATC))
LtoB et = LB_ATCcommbist. Handoff coprect(LATC, BATC)
LtoBincorreet = LB_ATCcommbist. Handoff incorrect(LATC, BATC)
LtoM coppees = LM _ATCcommbist. Handoff corpecs (LATC, MATC)
LtoM ineorrees = LM _ATCcommbhist. Handoff incorrect(LATC', MATC)

DEFINITION
SomeAction = V StoLcorreet
V StOLincorrect
V LtoB correct
V LtOBincorrect
V LtOMcorrect
V LtOMincom“ect
Safety 2 A Init
A O[SomeAction]persistent_data

Figure 16.7: Module This_ AT Ccomm_history (Part 2)

