Chapter 19

Flight Phases and System Modes

Flights are divided into phases, in which the state of the system is differentiated
from that of other phases. The phases distinguished by, for example, the Boeing
statistics [Gro96] are

e Load, taxi, unload

e Takeoff

e Initial climb (with flaps)

e Climb (after flaps retracted)

e Cruise

e Descent

e Initial approach (between initial approach fix and outer marker)
e Final approach (after outer marker)

e Landing

The use (and abuse) of machinery modes, in particular autopilot modes, as
well as the so-called mode confusion syndrome they engender, was studied in
[Deg96]. The significance of modes in WBA lies in the system architecture they
entail and the special way they give priority in certain circumstances to particular
responses to problems.

A mode has special entry and exit conditions. Furthermore, when this mode
is under human control, it is provided with particular mechanisms for entering
and exiting. Although in the array of flight phases, all phases may in principle be
aborted by the crew or ATC, in practice the phases intuitively most susceptible
to abort are Takeoff and Final approach.

Modes and phases are formally very similar; they have entry and exit condi-
tions and actions, and being in a particular mode or phase is part of the overall

279

280 Flight Phases and System Modes

system state. We therefore do not distinguish them, and treat them as one type
of feature. We include a TLA module to describe an arbitrary mode. The mode
has entry and exit actions, as well as an explicit action to remain within the
mode, even though logically this is not necessary in TLA. The significance for
complex systems with human parts is the axiom Decision (Figure 19.1). which
states that when an agent has reasons both for remaining within a mode and
exiting from it, that implies an obligation to decide explicitly to remain within
the mode or to exit from it.

This method of handling modes diverges from the concerns of PARDIA, which
aims to build a simple classificatory scheme for agency in complex systems. The
mode scheme rather aims to dictate what shall be done when a system of norms
changes, either for normal reasons or because there is a conflict and a resolu-
tion is required. An explicit decision of a certain sort shall be made. This is
behaviorally normative rather than classificatory. It plays a crucial role in our
incident explanation; when the pilots perceive that the layout of the airport is
different from that at Frankfurt and finally realise they’re aiming to land at the
wrong airport, the informal commentaries say that they chose to continue with
the landing. Had the commentaries said nothing, and had the pilots never re-
marked the difference, the flight would have proceeded substantially as it did
proceed, with no changes other than in the mental images of the pilots. We may
take it that their realisation and execution of the appropriate action (namely, to
change nothing) is mentioned to portray explicit conformance to a norm: this
norm is what we aim to represent in the module Mode in Figure 19.1.

In application of this module to the example, we shall designate as the landing
mode that phase of flight which starts with the crew accepting a clearance to land
and landing. This in general encompasses the three phases Initial approach, Final
approach, and Landing, although depending on the traffic levels, one may be
given (and accept) clearance to land also during the Final approach phase. This
is immaterial to our current example, although one can foresee circumstances
under which this may make a difference.

We instantiate the Modes module inside a module called Phases, with one in-
stantiation per phase. Phases as we present it here contains instances of just
three phases: LandingPhase that we shall use in the example, and the two
Boeing phases InitialApproachPhase and FinalApproachPhase. Since the nar-
ratives for the example do not specify in which of the Boeing phases the aircraft
was in when the crew remarked that the situation was untoward, we do not re-
strict InitialApproachPhase and FinalApproachPhase with the InMode predicate
(AC)in_landing_phase of LandingPhase. The point of Phases is to collect all the
actual instantiations used for an example. The Mode module is a general part
of WBA, whereas Phases is intended to be broader, with some general parts
(for example, all phases from the Boeing document above) as well as some in-
stantiations particular to the example (for autopilot modes, for example). In
general, a Phases module will be defined for each individual example, instantiat-

281

| module Mode

DECLARATIONS
CONSTANT X
VARIABLES InMode, OutOfMode

Definitions
InMode = —0utOfMode

Actions
EnterMode = OutOfMode A InMode'

EzitMode = InMode A OutOfMode'

RemainInMode = InMode A InMode'

Axiom
Decision = A InMode
A Reason(X, InMode")
A Reason(X, OutOfMode')

= O(Decide(X, RemainInMode) V Decide(X, EzitMode)) |

Figure 19.1: Mode Handling

282 Flight Phases and System Modes

| module Phases

DECLARATIONS
CONSTANTS CRW,AC
VARIABLES (AC)_in_landing_phase

DEFINITION
LandingPhase = instance Modes
with X < CRW, InMode < (AC)in_landing_phase
InitialApproachPhase = instance Modes
with X < CRW,
InMode < N (AC)in_approach
A (AC)before_outer_marker

FinalApproachPhase = instance Modes
with X < CRW,
InMode < N (AC)in_approach
A (AC)_after_outer_marker
Decision = A InitialApproachPhase.Decision
A FinalApproachPhase.Decision
A LandingPhase. Decision

Two of the Boeing phases are included as InitialApproachPhase and
FinalApproachPhase. Although these two are disjoint and adjacent,
the phase LandingPhase may overlap with them. When a decision
is required, it is likely to be required for all phases the aircraft is
currently in.

Figure 19.2: Phases Module with Three Phases

ing those modes and phases necessary for the analysis, and containing large parts
in common with other examples, corresponding to similar flight phases and simi-
lar autopilots. Various parts of Phases play crucial roles in rules of inference, for
example in Rule 19.1 below. Thus Phases itself plays the role of a distinguished
module, and its name that of a keyword, whose shape is assumed to be correct
by EL. Although Phases will change from example to example, corresponding to
different categorisations of phases of flight, and different autopilots with different
modes, its form must remain identical to that in Figure 19.2, else the Rule 19.1
will become nonsense. That means, in essence, that Phases is a logical constant
of the appropriate sort, as also its name, and that of its definitions.

LandingPhase is instantiated in Phases in Figure 19.2 with (AC)in_landing-phase
as InMode, and thus —(AC)in_landing_phase as OutOfMode. It follows that the

283

only actions (or nonaction) in Landing_Spec that can effect these changes are
Accept_Landing for and CRW_breakoff. This entails that the sentences

A Landing_Phase.EnterMode
A Landing_Specs.Spec

) = Accept_Landing(ATC, CRW,APT)

and
(/\ Landing_Phase. ExitMode

A Landing_Specs.Spec) = CRW _breakoff (CRW)

are both provable. Any one of a number of Landing_Specs-actions are compat-
ible with remaining in the landing phase, as is to be expected. It is reasonable
to interpret the crew’s decision ‘to continue the landing’ quite simply as Land-
ing-Phase. RemainInMode. Were we to pursue detailed reasoning concerning their
reasons and intentions, we would be trying to explain the whole business of com-
ing to this conclusion rather more deeply than seems to be needed, and we would
be stretching the boundaries between rational reconstruction of a rational process,
and psychological explanation, which WBA is not (yet?) equipped to perform.
We may so far demonstrate from the circumstances that

oV Decide(CRW , LandingPhase. RemainInMode)
V' Decide(CRW , LandingPhase.EzxitMode)

which is equivalent to

V' Decide (CRW)-in_landing_phase)

(AC
(AC).in_landing_phase’
(AC)_in_landing phase
—(AC)_in_landing_phase'

0

> > > >

V Decide (CRW,
We need to explain

Decide (CRW, A (AC)_in_landing phase)

A (AC)-in_landing_phase'

The intuitive reason for this decision is that the crew had reasons both for
continuing and for breaking off the landing, and a decision was called for, so they
made one. This may be formulated more generally:

The agent had good reasons both for and against a specific course of
action, and a demonstrable obligation to choose one or the other; so
chose one.

This constitutes an explanation, in so far as one needs one, of the behavior.
Such an explanation is not yet derivable from EL. It rests crucially on the con-
trasting reasons. One common situation in which one has contrasting reasons is

284 Flight Phases and System Modes

one in which the Hypotheses (namely, the actual situation) in concert with the
Procedures do in fact lead to a contradiction (which could be taken to indicate a
weakness in the procedures). Since other EL rules require that Hypotheses and
Procedures are true (i.e., they both occur as hypotheses of the rules), they cannot
be contradictory in any application of this rule. (An exception is the rule that
translates > into - 714.) A rule which allows an inference to be drawn from con-
tradictory Hypotheses and Procedures cannot be derivable from such rules whose
hypotheses require their joint truth.

The EL inferece rule formulated in Section 19.1 enables us to turn this con-
tradiction into reasons for and against a course of action.

19.1 An EL Rule for Required Decisions

We introduce a somewhat complicated EL rule which codifies this procedure.
This rule makes essential use of the Decision rules in Phases. The rule is only
intended to be applied when Phases. Decision is used, and furthermore when this
statement is correct and appropriate. It is not the case, as with normal inference
rules, that any sentence may be substituted and validity preserved. Logically
speaking, then, EL with the agency rules and axioms is a logic with certain
constants: modules or statements with distinguished, privileged status. It may
also make sense to distinguish other types of statements, for example Azioms
from Norms. Azioms would be statements that are universally valid throughout,
for example, laws of physics. They cannot be violated; whereas Norms may be
violated during the course of a behavior (and we would expect their violation to
carry causal-explanatory significance). We don’t choose formally to distinguish
these categories here, except for use of the constant Phases.Decision in the rule
below, and a requirement that the Phases module be appropriate.

19.2 An Unsatisfactory Rule 285

Hypotheses (19.1)
A Reason(X, A)
D 7
Hypotheses A O Procedures > (A Reason(X,—A))
Hypotheses
Reason (X, A)
Reason(X,—A)
OPhases.Decision

> O(Decide(X, A) V Decide(X,—A))

> > > >

Decide(X, A)

Hypotheses
OProcedures
OPhases.Decision
Decide(X, A)

= Decide(X, A)

> > > >

The presence of Decide(X,A) in both the antecedent and consequent of the
explanatory connective 0= may seem peculiar. But it is appropriate. It enables
the rule to remain monotone. We consider what would happen if Decide(X,A)
were not to appear in the antecedent.

19.2 An Unsatisfactory Rule

Consider the following argument. Suppose the rule were to be formulated without
Decide(X,A) in the antecedent of the conclusion. Consider a situation in which
both Decide(X,A) and Decide(X, —A). This is obviously a peculiar situation in
that contradictory decisions were made. Let us also assume the following rule:

XO=A (19.2)
XO=1B

X 0= (AAB)

This is to say that if a collection of facts sufficiently-causally-explains a fact A, and
also a fact B, that it so does their conjunction. If we were to have formulated the
inference rule without the Decide predicate in the antecedent of the conclusion,

286 Flight Phases and System Modes

the following inferences could both be made:

Hypotheses (19.3)

A Reason(X, A)
O

Hypotheses A OProcedures > < A Reason(X,—A))

Hypotheses

Reason (X, A)

Reason(X,—A)

OPhases.Decision

> O(Decide(X, A) V Decide(X,—A))

> > > >

Decide(X, A)

A Hypotheses
A OPhases.Decision

A OProcedures) = Decide(X, A)

and

Hypotheses (19.4)

A Reason(X, A)
O

Hypotheses A OProcedures > < A Reason(X,—A))

Hypotheses

Reason (X, A)

Reason(X,—A)

OPhases.Decision

> O(Decide(X, A) V Decide(X,—A))

> > > >

Decide(X,—A)

A Hypotheses
A OProcedures 0= Decide(X,—A)

A OPhases.Decision

19.3 Justification for the Behavioral Rule 287

We can now derive the following rule from Rules 19.3, 19.4 and 19.2:

Hypotheses (19.5)

A Reason(X, A)
O

Hypotheses A OProcedures > < A Reason(X,—A))

Hypotheses

Reason (X, A)

Reason(X,—A)

OPhases.Decision

>~ O(Decide(X, A) V Decide(X,—A))

> > > >

Decide(X, A)
Decide(X,—A)

A Hypotheses
A OProcedures 0= (Decide(X, A) A Decide(X,—A))
A OPhases.Decision

This would suggest that if two contradictory decisions were made, that the sit-
uation, which was sufficient to explain either decision individually, would also
have been sufficient to explain a pair of contradictory decisions, and this seems
intuitively implausible. It should be sufficient to explain either, but surely more
is required to explain why both were made. Thus the weakening of Rule 19.1 by
omitting Decide(X,A) from the antecedent of the conclusion is not appropriate.

19.3 Justification for the Behavioral Rule

Justification for Rule 19.1 is as follows. It must be shown that the relation of
antecedent to consequent is causal; also that the antecedent contains an array of
causal factors that render it sufficient.

We argue first that it is a causal relation. We must therefore argue, under the
hypotheses of the rule, that

(A Hypotheses O— —Decide(X, A)
A OProcedures
A OPhases.Decision
A Decide(X, A))

This is straightforward. The nearest possible world to that in which the an-
tecedent is true; that is, the antecedent of the conclusion of Rule 19.1 is false,
is the world in which the situation and procedures were identical, but instead
the Decide(A, —A) was made. That is, simply the opposite decision. After all,

288 Flight Phases and System Modes

this decision is supposed to be relatively free. Furthermore, we would argue that
the world in which both decisions Decide(X,A) and Decide(X, —A) were made is
stranger, thus further away, than the world in which just the opposite decision
was made. This nearest world is a world in which, then, Decide(X,A) was not
made; thus one in which =Decide(X,A) is true. QED.

Second, we argue that it provides a sufficient explanation. The Hypotheses
describe the actual situation as it pertains. From this situation, along with
operating procedures, one can obtain reasons for A as well as reasons for —A.
From the fact that one has reasons both for and against A, and one is in a
particular flight phase (stated in the Hypotheses), it follows from the decision
axiom of Phases that one should decide between A and —A. These facts alone
are sufficient to explain one’s decision, whether it be A or —A. (Notice that the
rule covers both decisions, since deciding for a negation, — B, is achieved by taking
B to be = A and observing that =B = ——A4.)

19.4 Separating Two Steps

It may be thought that, with transitivity of >, the two complex hypotheses could
be compressed into

A Hypotheses
A OProcedures >~ O(Decide(X,A)V Decide(X,—-A))
A OPhases.Decision

but this is not to be wished. When the Hypotheses and Procedures contradict
each other, then anything follows in TLA (in general, in any logic incorporating
the rule ex falso quodlibet), in particular:

(2 gyPZ;“(;i}ZZ;ses > > O(Decide(X, A) V Decide(X,—A))

without the hypothesis OPhases.Decision, and for any A at all. Thus proof
structure is lost: if Hypotheses contradict Procedures it does indeed follow that
the crew ought to decide how many stars there are in the night sky, as well as
everything else they can think of, if ex falso quodlibet holds. But that doesn’t
explain what they actually need to decide or whether they decided it. It follows
from Hypotheses and Phases.Decision that if they have reasons both for remaining
in and exiting their current flight phase (that’s included in Hypotheses), that they
ought to decide that. That they have reasons both for remaining in and exiting
their current flight phase would indeed follow using ex falso quodlibet in this case.
But separating the two conditions ensures that the remaining-or-exiting decision
is entailed by the situation of being in whatever flight phase they’re in along with
other statements, and not because its hypotheses are inconsistent.

19.5 Procedural Conflicts 289

19.5 Procedural Conflicts

In certain cases, procedures may conflict with the actual situation. In such a
situation, we hypothesise that a decision is required, whether to stay in the
current mode or to do something else. This entails that if the actual situation
continues to be in conflict with procedure, a continual evaluation of the current
mode is required. This reasoning is encapsulated in the following rule

Hypotheses (19.6)
Hypotheses A OProcedures = 1
Hypotheses > Phases.Mode.InMode

O(V Decide(X, Phases.Mode.FEzitMode)
V Decide(X, Phases.Mode.RemainInMode))

The second hypothesis of this rule, (Hypotheses AO Procedures > 1), is a formula-
tion of the conflict between actual situation and procedure: they contradict each
other. The rule derived directly from Rule 19.1 for the case in which hypotheses
and procedures conflict, (Hypotheses A OProcedures > 1), is:

Hypotheses (19.7)
Hypotheses A OProcedures > L

Hypotheses
Reason (X, A)
Reason(X,—A)
OPhases.Decision

A
ﬁ > O(Decide(X, A)V Decide(X,—A))
A

Decide(X, A)

Hypotheses
OProcedures

OPhases.Decision
Decide(X, A)

= Decide(X, A)

> > > >

One might be tempted by
Hypotheses A OProcedures > 1

along with Rule 1|, in Chapter 20:

NS

290 Flight Phases and System Modes

to conclude in such a case in which hypotheses and procedures contradict that

A Reason(X, A))

a
Hypotheses A OProcedures - < A Reason(X,-A)

and so that Rule 19.7 would follow directly from Rule 19.1. However, this line
of reasoning is incorrect, because it normally requires the Deduction Theorem,
which in this logic is not a valid rule. The Deduction Theorem says that whenever

A

B

then in fact
A= B

The conclusion we would desire would follow, were the Deduction Theorem to be
available, by converting Rule 1| into the implication

N (A Reason(X, A))

A Reason(X,—A)

and then using the transitivity of =. Since the Deduction Theorem does not hold
for intensional logics such as TLA or EL, this way is not open to us. Furthermore,
it’s not clear that Rule 19.7 would allow us the kind of inferences we need to
make without addition, since in the circumstances in which the hypotheses and
procedures contradict, it would not necessarily be reasonable to suppose the crew
would automatically have reason both for and against remaining in mode, and
therefore the antecedent of the third hypothesis might not necessarily be true,
and so the third hypothesis must obtain its justification through other means.

An alternative way to obtain rules for inconsistent hypotheses and procedures
is to consider the case in which, rather than determining if the consequent of the
third hypothesis of Rule 19.7 is a logical consequence of a specific antecedent,
we were simply to determine if the consequent were true: that is, if the agent
X ought to have made one decision or the other, regardless of the reasons why
heshe ought to have done:

Hypotheses (19.8)
Hypotheses A\ OProcedures > 1

O(Decide(X, A) V Decide(X ,—A))

Decide(X, A)

Hypotheses
OProcedures

OPhases.Decision
Decide(X, A)

0= Decide(X, A)

> > > >

19.5 Procedural Conflicts 291

Use of such a rule avoids deciding whether a crew has reasons both for and
against remaining in mode. The third hypothesis O(Decide(X, A)V Decide(X,—A))
can in specific cases of interest be proved with the help of Rule 19.6. Coupling
the hypotheses of Rule 19.6 together with the hypotheses of Rule 19.8 leads to
the following two specific rules — the first for FritMode:

Hypotheses (19.9)
Hypotheses A OProcedures > L

Hypotheses > Phases.Mode.InMode

Decide(X, X, Phases.Mode.EzxitMode)

Hypotheses

OProcedures

OPhases.Decision

Decide(X, Phases.Mode.ExitMode)
0= Decide(X, X, Phases.Mode. ExitMode)

> > > >

and the second for RemainInMode

Hypotheses (19.10)
Hypotheses A OProcedures > 1

Hypotheses > Phases.Mode.InMode

Decide(X, X, Phases.Mode.RemainInMode)

Hypotheses

OProcedures

OPhases.Decision

Decide(X, Phases.Mode. RemainInMode)
= Decide(X, Phases.Mode.RemainInMode)

> > > >

In other words, if the actual situation and procedures are in conflict, then any de-
cision to remain in or exit from a mode is fully explained by that decision (rather
than its contrary), along with the modes of the activity, the actual situation, and
the operating procedures.

19.5.1 Determining Rules for Behavior

Dealing with behavior, either of autopilots designed for human use, or of pilots
themselves, does not lend itself to the kind of absolute formulation of rules of
inference of the sort one finds in formal logic. The criterion for a rule of inference
to be valid is that if the premisses are all true, the conclusion is guaranteed to

292 Flight Phases and System Modes

be also. How are we to determine whether a rule such as Rule 19.10 satisfies this
exacting standard?

Rule 19.10, like the others in this section, is a rule which determines when
we have a satisfactory explanation of an action (likely) involving human agency.
An argument can be made, as above, that such a rule holds for the domain of
aviation, but it may very well not for the domain of, say, eating candy. How
can it then be a rule of inference, one might ask, since such rules have universal
validity, and therefore apply, if they apply at all, also to candy eating?

The question can be answered by classifying the rules of inference of EL into
two:

e the basis rules are valid, in the usual sense of validity under all interpreta-
tions;

e the behavioral rules are formulated on the basis of a restricted domain of
activity (aviation rather than candy eating), and are used to indicate what
counts as a sufficient explanation of behavior in this domain.

It may very well be the case that one must generate new behavioral rules for
aspects of behavior in individual accidents. This is in order; human behavior,
even when circumscribed so precisely as in aviation, is a very complex subject, so
we should expect that sufficient explanations of that behavior are also complex.
One could imagine that a few hundred to a thousand rules might encompass all
behavior of relevance for explanatory purposes in this domain. One could well
imagine it could be even more. Such questions properly belong to studies of the
cognitive psychology and organisational behavior involved.

This should not discourage us from formulating and using behavioral rules,
however. A rule is used to explain certain behavior. In our example, the rules
above concerning modes were prompted by the specific need to generate an expla-
nation of [1.1]: CRW opts to continue landing, given that the crew had noticed
that the airport wasn’t Frankfurt and that they had ‘safety reasons’ for con-
tinuing. Does this mean that the rules are ad hoc? In one sense, yes, but in
another sense no. It is to be expected that different accidents will expose dif-
ferent features of agency. These features are discussed and reasoned over in any
case by investigators. Attempting to formulate them as rules, preferably given
previously-formulated behavioral rules, enforces a discipline on the discussion of
how the behavior is justified. A rule is formulated, and the discussion of the
applicability of the rule includes its validity in the entire domain, not just its
sufficiency for the one instance under consideration. This lends precision to the
business of deciding whether agent actions were appropriate, and whether proce-
dures need to be amended.

Formulating and discussing behavioral rules, then, brings advantages of formal
methods, known from software and hardware analysis, namely their precision and
level of generality, into the domain of agency within complex systems. It may be

19.5 Procedural Conflicts 293

argued that such approaches cannot terminate - that more and more rules will
need to be brought in, and that one will never have enough to form a complete
theory of agency in a given domain. That may be so, or it may be false - it is not
necessary for one to develop a complete theory of agency in order to figure out
the role that specific agents’ actions played in a specific instance, or to discuss
what counts as a good explanation of that role. It is, however, necessary both
to be precise and to attain some level of generality; and that is accomplished
by formulating rules expressing what counts as sufficient explanations of certain
forms of behavior, as we have done above.

294 Flight Phases and System Modes

