Chapter 7

An Example: Playing Golf

It has been suggested by colleagues [Mel00, Lev00] that safety concepts can be
applied to a simple system such as a golf game. Recall that all that is needed to
have a system is objects and behavior.

Intuitive Interpretation The idea is that

e an accident is some event such as playing too many strokes (and thereby
losing the game);

e Landing in a bunker entails with high probability that one increases the
number of strokes required to play the hole, and thus to play the game

e Thus landing in a bunker, or being in a bunker, represents a hazard

e The risk associated with the hazard (with the bunker) is the expected num-
ber of extra strokes one must take to get out of the bunker

7.1 The Basics: Objects, Predicates, Accident

We provide here a reconstruction of the example according to the concepts we
have already introduced.

Objects The system and environment are defined by objects. These are
e A golf ball: b

e A player: p
e A course: C

e A bunker: B

Let us for simplicity assume that there is only one bunker. Notice that the bunker
is part of the course: B < C.

97



98 An Example: Playing Golf

Predications There really isn’t a whole lot that can be said yet in the way of
predications. Intuitively,

e the ball can be on the course: loc(b, C)
e and when on the course it can be in a bunker: loc(b, B)
e the player can be on the course: loc(p, C)

e and the player can be in the bunker: loc(p, B)

Accident An accident is too high a stroke count at the end. It seems we need a
fluent TotalStrokes for the total number of strokes played. We have simplified by
having only one player, so the player must be playing against a set total, N. An
accident would be a total stroke count greater than this limit: TotalStrokes > N.

7.2 The System And Behavior

We only have four main objects, so there are only a few choices.

e the ball b alone belongs to the system; the other objects to the environment.
This would mean that the predications above are all hybrid or environment
predicates:

— loc(b, C) and loc(b, B) are hybrid;

— loc(p, C) and loc(p, B) are environment.

System predicates would be those obtained from the hybrid predicates by
quantification. There is only one, namely

— Erzists X.loc(b, X)

And if we assume that the ball remains on the course the entire time, this
sole system predicate turns out to be always true.

e The ball 6 and player p belong to the system. It follows that all four pred-
icates above are hybrid, and the system predicates are Ezists X.loc(b, X)
and Ezists X .loc(p, X) If we assume that the player remains on the course
with the ball, both of these are always true.

e The course C belongs to the system, player and ball to the environment.
Because B is part of C, B < C, B must belong to the system also. The
system predicates would be Ezists z.loc(z, C') and Exists z.loc(z, B): there
is a player or ball on the course or in the bunker. Again, the former is always
true; the latter is what we intuitively have called a hazard.




7.2 The System And Behavior 99

e The bunker B belongs to the system; the course C' to the environment.
Whether ball and player belong to system or environment, one may classify
the predicates similarly to above.

e Everything belongs to the system. In this case, all predicates are system
predicates.

Additional Objects In order to say what we meant by an accident, we intro-
duced the fluent TotalStrokes and the natural numbers (or at least one of them,
N). If we include the natural numbers, we have more to say. In principle, we
should inquire whether the fluent TotalStrokes and the natural numbers belong
to the system or not. In practice, it doesn’t matter. In general, expressive arti-
facts we introduce in order to be able to talk about a system will not need to be
classified with the system, but in certain circumstances they may.

Greater Expressive Capability Accumulating strokes by landing in a bunker
raises the chances of TotalStrokes exceeding the target N, because of the increased
chance of extra strokes being needed. But one extra stroke in a bunker may be
neutralised by a reduced number of strokes (due to luck or skill) later. So it’s not
inevitable that an accident will occur if one lands in a bunker.

Behavior We must say what kind of behavior the system can engage in (what-
ever we take the system to be). In order to specify behavior, we have to say what
changes can occur, of system and environment. The ball and player are always on
the course, so there can be no change in this predication. However, both ball and
player can be in or out of the bunker. This gives the possibility of four changes.
In the formalism below, I use the prime symbol “ 7 ” on a predicate to indicate
that this is true after the change, and any predicate without a prime is asserted
to be true before the change.

e Player in bunker, then player out:

loc(p, B) & —loc'(p, B)

e Player out of bunker, then in:

=loc(p, B) & loc'(p, B)

e Ball in bunker, then out:

loc(b, B) & —loc'(b, B)

e Ball out of bunker, then in:

=loc(b, B) & loc' (b, B)




100 An Example: Playing Golf

Furthermore, strokes are being accumulated, so an additional change can occur
to the fluent TotalStrokes:

TotalStrokes' = TotalStrokes + 1

I use the prime notation here to indicate that the value of TotalStrokes after the
change is 1 greater than the value before.

7.3 Expressing Constraints on Behavior

Every Change Means (At Least) A Stroke Intuitively, each change in
location of the ball must be caused by a stroke. However, if the ball is be hit
from place to place on the course without landing in the bunker, we cannot
express that change in the language we have. So the stroke count can increase
without a change in (expressible) location. We might suppose that the condition
on location change is

loc(b, B) & —loc'(b, B) = TotalStrokes' = TotalStrokes + 1

&
=loc(b, B) & loc'(b, B) = TotalStrokes' = TotalStrokes + 1

but we would be wrong. We are measuring change by comparing two states.
But these two states may not represent consecutive hits of the ball. We may
be comparing two states relatively far apart, say 4 or 5 strokes apart. Thus the
correct condition is

loc(b, B) & —loc' (b, B) = TotalStrokes' > TotalStrokes

&
=loc(b, B) & loc'(b, B) = TotalStrokes' > TotalStrokes

Expressing the Bunker Constraint We want to say that if the ball lands
in the bunker, this is likely to increase the final score, but not definitely because
of the chance of a birdie, as noted above. One way of saying it is that landing
in the bunker increases the expected final stroke count. We need a new fluent
ExpectedScore. The condition that landing in the bunker increases one’s expected
score by 1 is expressed by

=loc(b, B) & loc' (b, B) & TotalStrokes' = TotalStrokes + 1

= EzpectedScore’ = ExpectedScore + 1

Here again, the extra conjunct in the antecedent ensures that we are comparing
a change due to one stroke, not to many.




7.3 Expressing Constraints on Behavior 101

The Game Must Stop We have been assuming that FEzxpectedScore is a pos-
itive integer. There are formal ways of expressing all these conditions such that
all such assumptions are explicit - for example TLA [Lam, Lam94b, Lad97], from
which this notation is lifted. However, let us continue without worrying about
these technical details for the moment. One important constraint on behavior is
that the game stops. That means that at some point in the future, the stroke
count TotalStrokes maintains a fixed value for ever.

Using Tense-Logical Operators Let us phrase this in terms of behavior and
state. We use the tense-logical operator <: asserting $A is to assert that at
some state in the future, A will hold. We want to say that at some point in the
future, the stroke count does not change for ever more. The “dual” of < is the
tense-logical operator O: OA asserts that at all states in the future, A will hold.
It is straightforward to check that

CA & —-0-4

and
0OA & <04

by referring to the behavior diagram in Figure 3.5, and imagining it going on for
ever. The two equivalences can be expressed in natural language as follows. If A
is true in one of the states (one can write it in to make it clear), then it cannot
be the case that A is false in all the states; that is to say, that —A is true in all
the states. Similarly, if A is true in all of the states, then it cannot be the case
that A is false in one of them; that is to say, it cannot be the case that —A4 is
true in one of them.

Expressing the Stopping Constraint To say that, at some state in the
future, it will be the case from then on that the stroke count will not change,
can be expressed as follows. Boz(TotalStrokes' = Totalstrokes) says that the
stroke count remains the same for ever more. We need to say that this assertion
becomes true at some state in the future. This means it needs to be prepended
with ©. So &O(TotalStrokes' = TotalStrokes) expresses the stopping constraint.
Notice that we haven’t said when the game stops. We have not built a stopping
criterion into the example yet, and won’t do so.

Expressing the Accident We can now say that an accident will happen:

O TotalStrokes > N




102 An Example: Playing Golf

Constraints Are Expressible Independent of the System Notice that we
have been able to express the constraints unambiguously without deciding exactly
in what the system consists. This phenomenon is more or less general: one can
express constraints on system and environment without necessarily needing to
distinguish them.

7.4 Hazard Definitions and Consequences

Hazard The reason that landing in the bunker is a hazardous situation is that
the expected number of strokes is thereby increased. If one has already birdied five
times, then landing in a bunker and expecting to lose a stroke is not particularly
problematic, or hazardous, because one then expects merely to finish four under
instead of five under. I suggest that landing in the bunker becomes hazardous
when the expected number of strokes increases to above the limit N. In fact,
bunker or no bunker, this is a hazard, and remains a hazard until one birdies to
get it down again. So we might try to express being in the hazardous situation
by the state predicate FzpectedScore > N.

Hazard and World State There are only two objects (one fluent and one
integer) mentioned in the state predicate that expresses a hazard. Neither of these
objects belongs to the system as we have so far conceived it, or the environment
as we have so far conceived it. There are the following possibilities:

e If integers and the fluent belong to the system, then the hazard definition
is a system predicate; thus a Hazard-1-type definition.

e If integers and the fluent belong to the environment, then the hazard defi-
nition is an environment predicate; thus a Hazard-2-type definition.

e If one belongs to the system and the other to the environment, then the
hazard definition is a hybrid predicate; thus a Hazard-4-type definition.

Is An Accident Is Inevitable? From the state predicate EzpectedScore > N
it does not follow that an accident is inevitable. However, we may imagine that
ExpectedScore is really the ezrpected score, and if we get to within one stroke
of finishing and the expected score is still greater than N, then the total we
have already, TotalScore, must be already greater than or equal to N. So if the
expected score rises to above N, and remains there until the game finishes, then
an accident is inevitable. That is,

EzpectedScore > N & O(ExpectedScore > N)

= O(TotalScore > N)




7.4 Hazard Definitions and Consequences 103

That is, an accident is inevitable if the predicate
EzpectedScore > N & O(ExpectedScore > N)

ever becomes true. A technical point: in tense logic as used in engineering, the
statement A = A is taken to be an axiom, for any statement A. Hence we may
write the statement

EzpectedScore > N & O(ExpectedScore > N)
as its tense-logical equivalent
O(EzpectedScore > N)

without loss of expressiveness.

Summary of the Hazard Definitions We may summarise the situation with
regard to the use of hazard definitions as follows.

e if we use the hazard definition O( EzpectedScore > N) then

— We may use a Hazard-1 definition only if both FzpectedScore and N
belong to the system;

— We may use a Hazard-2 definition only if both EzpectedScore and N
belong to the environment;

— If one of EzpectedScore and N belongs to the system and the other to
the environment, we may use Hazard-4;

e Consider the hazard definition (EzpectedScore > N). An accident is not
inevitable from a state satisfying ( EzpectedScore > N) unless it also satisfies
O(EzpectedScore > N). To use a Hazard-1 or Hazard-2 definition, one
of these predicates would have to be a system predicate and the other
an environment predicate (recall that according to these definitions, and
accident is inevitable if a hazard state (system or environment respectively)
coupled with a complimentary state (of environment or system, respectively)
leads inevitably to an accident. Since both predicates mention the same
objects, they are either both system or both environment, and cannot be
one and the other. Hence a Hazard-1 or Hazard-2 definition cannot be
used. A Hazard-4 definition also requires inevitability. Hazard-3 is the
only definition which requires just increased likelihood. Hence if the hazard
definition is taken to be (EzpectedScore > N), a Hazard-3 definition must
be used.




104 An Example: Playing Golf

Hazard Definition Type Depends on What’s In The System We may
conclude that which type of hazard definition is used depends on what one con-
siders to be part of the system and what not.

e Ifone insists on using a Hazard-1 definition, then one must include ExpectedScore
and integers (at least, N) as part of the system.

e If one insists on using a Hazard-2 definition, then one must include FzxpectedScore
and integers (at least, N) as part of the environment.

e One cannot use a Hazard-4 definition.

e A Hazard-3 definition can be used which is logically simpler (it does not
include the tense-logical operator ), no matter where EzpectedScore and
N are chosen to belong.




