KAPITEL 8

Ontological Hazard Analysis — Uberblick

8.1 Introduction

There is a major question of how to perform an accurate risk analysis of
systems with software-based components (often subsumed under the rubric
electrical/electronic/programmable-electronic, or E/E/PE systems). There is a consen-
sus amongst senior scientists and engineers, backed by rigorous statistical reasoning,
that developing systems by “the usual methods” and testing to identify and eliminate
faults cannot attain the required dependability. Other methods are needed, and again
the consensus is that these methods must be rigorous, which means formal. It is
important that

* the methods connect with the usual methods used by system safety engineers,
and

* that they admit practical application to typical industrial examples.

Computer scientists have many formal methods at their disposal whose capabilities
are well-known, but which methods are not typically used in industrial development,
for various reasons, amongst them that they violate one of these two conditions. We
relate in this paper two case studies of how a particular approach, Ontological Hazard
Analysis (OHA, first proposed in [36] under the name “Ontological Analysis”) can be
used for risk assessment of E/E/PE systems.

The basis for OHA is to start with a very abstract requirements specification, of a
form which computer scientists are used to produce, in a semi-formally-controlled

154 8 Ontological Hazard Analysis — Uberblick

language. This initial language L must be such that

* it is a formal language, containing names for objects, and symbols for properties
of those objects and relations between them, i.e., it is a subset of the language
of predicate logic

* the set of all possible (non-equivalent) statements in the language is finite

* all users can agree on which of these statements state safety requirements, say
the set S

* the safety requirements identified can be seen to constitute a sufficient set

There is some skill involved in picking this first language, and the success of the OHA
method is dependent on a suitable choice. The finite set of non-equivalent statements
in L must also be small enough that engineers can consider them all, and make
judgements about them, in a reasonable period of time.

OHA proceeds from L and S by formal refinement, a well-known technique in
computer science but not one common amongst system safety engineers. The language
L is extended, by considering new objects, properties and relations which express
structure and behavior of the system in more detail, less abstractly. Let us call this
language L1. The concepts of L (objects, and especially properties and relations) must
be expressed in L1. The definitions of the concepts are known as “meaning postulates”.
The safety requirements in S have their translations into L1, producing say the set
of requirements S1, and these are the safety requirements that have to be assured.
It may be necessary to introduce new requirements in L1 that guarantee (logically
imply) the requirements in S1. Thus the set of safety requirements in L1 is a set S1'
which includes S1. This process is repeated as many times as it takes to achieve the
goals, which may be

* asystem architecture, at, for example a source-code level, so that code may be
developed directly from the architecture
* a system architecture which allows standard methods of risk analysis to be
applied
We call the successive languages levels. The initial language L is Level 0, its successor
L1 Level 1, and so on.

The important feature of the refinement process is the traceability it enables
between initial, very abstract system functional definition and, in the end if all goes

8.1 Introduction 155

well, the source-code-level design. This traceability eliminates much of the uncertainty
in the development process which leads to unreliability of the risk assessment of the
resulting system.

Good idea, but does it work? Many formal approaches do not pan out when applied
to industrial examples. We have performed three OHAs on industrial examples. The
three analyses were all very different in both style and formal techniques used, but
they were all successful in reducing risk assessment to generic methods, and all used
the same semi-controlled language/controlled refinement approach of OHA.

1. The first author defined a generic communications-bus architecture applicable
to both CAN-bus and Flexray-based communications for road vehicles. The
initial language in which the functional requirements were stated was mo-
derately complex. The refinements were achieved through applying HAZOP
to the current level, then performing a partial causal analysis of how these
deviations could occur (per deviation a mini-Why-Because-Graph, called an
epWBG, was created) and the vocabulary necessary for expressing these causal
factors defined the next level. The analysis was moderately complex, as he says.
However, the epWBGs could be easily converted into fault-tree representati-
ons, and already at Level 2 the separate mini-fault trees resulting from the
epWBGs could be combined into a single fault tree, enabling the usual fault-tree
risk-analysis method of assigning probabilities to the leaf nodes and working
one's way upwards through the tree. Thus the goal was accomplished of taking
a moderately-complex and realistic E/E/PE system and developing it to the
point at which state-of-the-practice risk analysis methods could be applied. Any
residual unreliability of such an analysis resides in the usual difficulties with
fault-tree analysis (the accuracy of the necessary probabilistic-independence
assumptions, for example) as well as in the confidence of the accuracy of the
derivation of the fault tree. (We admit a certain amount of laziness here — the
actual derivation of the fault tree was performed as a student project at the
University of Bielefeld, where the third author teaches. Thus we confirmed that
the conversion is feasible, which was the point of the exercise, but we did not
necessarily arrive at a fault tree which we would trust!)

2. The second author attempted to derive a computer-based system for performing
the communications between train controller and drivers necessary for operating
trains according to the German train-dispatching protocol for non-state-owned

156

8 Ontological Hazard Analysis — Uberblick

railways. Train dispatching (German “Zugleitbetrieb”) is the common means
of operating trains on single-track lightly-used rail lines, which are commonly
not equipped with signalling systems. The protocol is defined in a document,
the FV-NE [71], which is part of German administrative law. He started from
the obvious, overriding requirement for block-based train protection, that no
two different trains may occupy the same block at the same time except under
certain special circumstances. The Level 0 language required to express this is
astonishingly simple, and enabled a manual selection of safety requirements,
which is complete in the sense that they cannot be logically strengthened.
Level 1 and further levels were defined through the usual type of refinement
process familiar to computer scientists, in which the extensions of the language
were carefully controlled in small steps. It proved to be possible to express
the entire functional operation of the system at each level in terms of a global
finite-state machine, and the state machines were formally proved to refine
each other, sometimes through addition of extra requirements which then
become safety requirements. The final step involved transforming the global
state machine into a set of communicating state machines, one representing a
driver and one a train controller, with message-passing. This was expressed in a
structure called a Message Flow Graph (MFG), for which the third author has
defined a formal semantics [38], and thus the MFG could be formally proved to
implement the appropriate global state machine. The MFG agents were then
implemented as SPARK procedure skeletons with the appropriate annotations
by Phil Thornley of SparkSure, and the annotation proved to implement the
MFG. Thus the entire development ensured complete traceability between
very-high-level safety requirements and SPARK source code. Suppose such a
system were to be implemented as either an automated dispatching system,
with computers replacing the human agents, or, more practically, as a support
system which checks that the required steps have been performed by the human
agents. Then the risk of using the system resides entirely in the hardware
and communications systems used, as well as in the compiler used to compile
the source code, and in human factors such as whether the system is used as
intended, and there is no residual risk inherent in the logic of the program
design itself. The risk of this computer-based system has thereby been reduced
to that of other, generic risks, which data from other, unrelated projects may be
used to assess.

8.1 Introduction 157

3. The first two authors have performed a security analysis for a configuration con-
trol and downloading system for road vehicles with configurable components
based on generic hardware, in the European Commission Integrated Project
AC/DC, which involves a number of large European automobile and compo-
nent manufacturers. The secure downloading of a configuration from secure
manufacturer sources to a vehicle in the field is a vital component in the pro-
cess which the project is attempting to define and prototype. The authors first
defined a threat model, with which their project clients agreed, and then using
OHA derived a complete set of attack patterns and therefrom the attack trees
for this threat model. No other technique is known to us which could have
accomplished this in a checkably-reliable way. The total effort involved was eigh-
teen person-months, a non-trivial amount but still a low level of effort when
compared with the consequences of a successful attack. Since this example
concerns security and not safety, we do not consider it further here.

Conclusion

The field of E/E/PE safety lacks methods for performing risk analysis on systems
with software-based components in such a way that one may be confident in the
risk assessment. The technique OHA, based on expression of requirements in semi-
controlled language and formal refinement steps, allows the risk assessment of an
E/E/PE system to be based on generic state-of-the-practice risk-assessment methods,
in such a way that one may be as confident in the results of an assessment as one is
confident in these generic methods. The application of OHA may be straightforward
or more complex, but in our case studies on industrial examples it has lain within the
range of the economically achievable. We thus recommend its use.

Structure of the Paper

We have stated above the purpose and conclusions, as well as briefly described the
case studies concerning the use, of Ontological Hazard Analysis. This constitutes, if
you like, the “executive summary” of the work. The two following sections present
some details of the first two case studies.

158 8 Ontological Hazard Analysis — Uberblick

8.2 A Case Study: OHA for an Automotive Communications
Bus System

Bus communication systems in road vehicles became useful with the integration of
increasing numbers of electronic devices. The multiplexing of these at first separated
systems via a communications system enabled savings in weight, lower costs of
production, and greater design flexibility.

With emerging new areas of application such as X-by-Wire, communication proto-
cols supporting time-triggered communication are an increasingly common sight in
cars.

8.2.1 Initial System Description

Schematically, an integrated communication bus system in a car can be depicted as
shown in Figure 8.1. The operator of the vehicle gives input into the system using
steering wheel, pedals, shift box and other selector switches, of which the states
are assessed by sensors which provide input for network Nodes (NIC). These are
interconnected with a network bus by which information exchange is enabled. Other
Nodes process the available information and provide them to connected actuators
with can then influence brakes, gear, inverter, transmission, etc.

For the identification of hazards to the communication bus, the system is defined
to compass the nodes and the physical wiring of the network bus, all other elements
are part of the environment.

8.2.2 Ontology of the initial system description

Based on the initial system-description three objects with 10 properties and one
relation are identified. To avoid misunderstanding the meaning of each element of
the ontology is defined with the element in the tables below.

8.2.3 Guide-Word based Approach for Identification of Hazards

We used HAZOP’s guide-word-based approach to identify deviation because of its
systematic nature.

8.2 A Case Study: OHA for an Automotive Communications Bus System 159

Object Description
NIC The Network Interface Controller. This is the interface
between the input device and the physical network.
. The physical connection between the systems’ NICs. Trans-
Wiring ..
mission
. . The transport of information between NICs over the phy-
Transmission .
sical network.
Tabelle 8.1: Objects of the System
Property Description
Input The information received by the NIC
Output The information transmitted by the NIC
Intact The integrity of the NIC, whose absence prevents the NIC
from working properly.
Tabelle 8.2: Properties of NIC
Property Description
Intact The integrity of the wiring, whose absence prevents the
physical network from working properly.
Tabelle 8.3: Properties of Wiring
Object Description
Size The size of the transmission
) The latest possible point in time at which the transmission
Deadline . . .
can be received without loosing its value.
Period Frequency of the generation of a type of transmission
Mode The mode used for a transmission. This can be either
time-triggered or event-triggered.
The time it takes for the complete transmission of infor-
Latency)
mation over the network.
Jitter The variance in the transmission time of a multitude of

same-typed transmissions.

Tabelle 8.4: Properties of Transmission

160 8 Ontological Hazard Analysis — Uberblick

Operator / Driver

I
v v L] L/

Steering | | pogats | | ShiftBox| | SCiector
wheel switches

N K9 N9 [g

@g g] N9 RY R

System
Environment

Brakes Steering Battery
gear
Vehicle Inverter/ Trans-
Motor .o
controller mission
controller

Abbildung 8.1: Integrated Communication Bus System

Relation Description
Connection(Wiring, The feature of the NIC to be connected properly
NIC) with the Wiring.

Tabelle 8.5: Relations of the System

By combining the HAZOP guide-words with each element of the ontology, a com-
prehensive list of possible deviations is generated. As usual in HAZOP, these possible
deviations now have to be interpreted for their impact and meaning in the specific
application. A number of these putative deviations can easily be dismissed, as certain
guide-words may not make sense when applied to certain elements.

The list of guide-words as shown in Table 8.6, is a combination of guide-words
proposed by the Royal Society of Chemistry [17] and “System Safety: HAZOP and
Software HAZOP” by Redmill, Chudleigh and Catmur [60].

Overall our system ontology for the initial system description comprises 14 elements

8.2 A Case Study: OHA for an Automotive Communications Bus System

161

Guide- .
Source Interpretation
Word
No RSCO1 None of the design intent is achieved
This is the complete negation of the design intenti-
RCC99 on - No part of the intention is achieved but nothing
else happens
More RSCO1 Quantitative increase in a parameter
RCC99 This is a quantitative increase
Less RSCO1 Quantitative decrease in a parameter
RCC99 This is a quantitative decrease
As ;/;fell RSCO1 An additional activity occurs
This is a qualitative increase, where all the design
RCC99 intention is achieved together with additional acti-
vity
Part of = RSCO1 Only some of the design intention is achieved
This is a qualitative decrease, where only part of
RCC99
the design intention is achieved
Reverse RSCO1 Logical opposite of the design intention occurs
RCC99 This is the logical opposite of the intention
(z:;ir RSCO1 Complete substitution. Another activity takes place
This is a complete substitution, where no part of
RCC99 the original intention is achieved but something
quite different happens
Early RSCO1 The timing different from the intention
RCC99 Something happens earlier in time than intended
Late RSCO1 The timing different from the intention
RCC99 Something happens later in time than intended
Before RSCOL The step (or some part of it) is effected out of
sequence
RCC99 Something happens earlier in a sequence than in-
tended
After RSCO1 The step (or some part of it) is effected out of
sequence
RCCO9 Something happens later in a sequence than inten-
ded
Faster =~ RSCO1 The step is done with the right timing
Slower RSCO1 The step is not done with the right timing
Where Applicable for flows, transfers, sources and destina-
RSCO1]
else tions

Tabelle 8.6: HAZOP guide-words used and their interpretations

162 8 Ontological Hazard Analysis — Uberblick

and the set of guide-words 13 elements. The combination of elements with guide-
words produced 182 possible deviations which were reduced by the interpretation
process down to 59 meaningful deviations, a reduction of about 67%.

8.2.4 Formalisation of Deviations by Usage of Ontology

The systematic generation of deviations produces some equivalent deviations in va-
rying wording. Such deviations don't have to be analysed more than once, but can
be difficult to identify. We accomplished this by expressing the deviations semi-
formally using the vocabulary of the ontology. E.g. the deviation “Information
is reversely transmitted” can be expressed by the formula “Output(NIC) = IN-
VERSE(Input(NIC))”. Equivalences are much easier to see using the semi-formal
mathematical-style language.

As a side effect, this formalisation helps to identify missing elements in the ontology;,
which can then be included to enable the expression of further deviations. In the step
from the initial system description and ontology to the first refined version, this led
to an additional 3 objects, 21 properties and one relation. The refinement to the 2nd
refined version identified another 14 properties and one relation.

After 3 iterations of refinement the system ontology overall comprises 6 objects, 45
properties and 3 relations.

8.2.5 Extended Partial Why-Because Graphs

To analyse the causal factors leading to a deviation, an extended partial Why-Because
Graph (epWBG) is created. Why-Because Graphs were intended for a-posteriori
analysis of incidents, in which all causes of a node actually occurred [32]. We could
say by analogy with fault trees, that the graph-relationships are all AND-related.
For system development, we need to consider alternative ways in which an event
can occur, and thus one needs to represent an OR-type relationship as well, as in
e.g. Mackie's INUS conditions [51]. The WBG is extended by introducing an OR
relationship, and because we are only concerned with limited causal relationships
among certain elements, we call the result an extended partial WBG or epWBG.

Typically the epWBG describing the causes of the occurrence of a deviation are
rather small, the number of their nodes varying between 1 and 11 nodes. For example,
the events that can cause the deviation “The Network has no shielding” which can

8.2 A Case Study: OHA for an Automotive Communications Bus System 163

1
Shielding(Network)=0

OR
A
1.1 12 1.3
Design(Network) Interference(Universe ,Network) FailureRate(Wiring)

Abbildung 8.2: epWBA of deviation ,,The Network has no Shielding*

be expressed as “Shielding(Network) = 0” to occur can be represented as in Figure
8.2.

From the system definition only three events can lead to the deviation occurring:
either the shielding was omitted during design; direct interference from outside the
system caused the shielding to disappear; or the shielding failed by itself.

Other deviations are more complex in their causal description. The causes of the
event of a network node becoming dysfunctional or broken, “NOT Intact(NIC)”, are
shown by the epWBG in Figure 8.3.

8.2.6 Statistics of the Analysis

As shown in Figure 8.4, the elements in the ontology of the system description
expanded most in the first refinement step. The step from 2nd to 3rd iteration also
provided a more detailed system description, the missing elements were mostly
properties of objects and one relation.

In Figure 8.5 the overall numbers of deviations are shown, classified into deviations
expressible with the system description's current ontology and those so inexpressible.
The refinement step is expressibly intended to be able to state these deviations. As
can be seen, with advancing refinement of the system description, the percentage of
expressible deviations continually improves.

164 8 Ontological Hazard Analysis — Uberblick

1
NOT Intact(NIC)

11/ \12

Influence from

Influence from

within the system outside
111 12.1
FailureRate(NIC) OR Interferen_ce(Network,
/ \ Universe)
1.1.2.1 1'1'2.'2
. Electrical
Physical Influences
T Influences
1.1.2.1.1 1.1.2.2.1
Network(Design) Overload of NIC
1.122.1.1
MaximalLoad(NIC) OR
/ ' ‘\
1.1.22.1.2.1 1122122
OutputEnergy(Device) Energy(Transmission)

Abbildung 8.3: NIC is not intact

8.2.7 Transformation of epWBGs into Fault Trees

For risk assessment of the system, it is necessary to quantify the possible failures. One
common way to do this is through a fault-tree analysis. A fault tree was created by
first translating the epWBGs into corresponding small fault trees, which were then
combined into an overall fault tree describing all the possible factors leading to a
failure. This transformation was performed by a group who were learning how to work
with fault trees. The goal was not to produce a fault tree suitable for troubleshooting
and system maintenance, which requires that nodes adjacent to the root-node act
as decision points, but rather to produce a fault tree which could be used for risk

8.2 A Case Study: OHA for an Automotive Communications Bus System 165

60 M Relations

El Properties

50] Objec L
40 —

30 -
s 20 —
$ 10 -

0) |
1st 2nd 3rd
itera- itera- itera-
tion tion tion

Abbildung 8.4: Extend of Elements in System Description’s Ontology

assessment, in which leaf nodes are assigned probabilities and the probabilities are
combined moving up the tree towards the root-node. Thus, when constructing the
combined fault tree, certain “classification nodes” were introduced to denote clusters
of similar factors without regard as to whether these classifiers were observable.
So e.g. Human failure was used as such a classifier and would obviously not be
appropriate in a fault tree used for diagnosis.

8.2.8 Filtering of epWBGs

During the course of the analysis, several epWBGs were built which identified pro-
blems residing in the specification. As the goal of the fault tree lies in the assessment

166 8 Ontological Hazard Analysis — Uberblick

200 FJ Inexpressible

Devitions
180 N Expressible
deviations

160 = Quota of des- —

cribable Devia

é40 tions | |

. pd -
gou 7

1st tera- 2nd 3rd itera-
tion iterati- tion

Abbildung 8.5: Expressible and Inexpressible Deviations

of risk for an implemented system, such specification faults were not included in the
combined fault tree, for they would be eliminated before the implementation stage.

Another feature of the deviation-identification approach is the identification of
trivial events such as “The device does not exist”. In most cases, such events occur
also through failures in specification or the implementation and would similarly be
eliminated before the implementation stage and were not included in the combined
fault tree.

epWBGs comprising only two nodes resolve to an identity in fault-tree notation.
They occur as one node in the generated fault tree.

8.2 A Case Study: OHA for an Automotive Communications Bus System 167

8.2.9 Algorithm used for clustering epWBGs

As the epWBGs are formulated to describe deviations, one epWBG can describe factors
involved in other epWBGs. To cluster these, the following procedure was used:
Choose one epWBG

Look at leaves

Select concepts in leave nodes

Look up concepts in HAZOP tables

Identify the interpretation that fits the node in HAZOP table

o kA W=

Go to the list of identified deviations and identify the respective deviation
number

7. Repeat process for the epWBG for the identified deviation

The application of this procedure led to several combined epWBGs which formed
the basis for the next step, the transformation into one larger fault tree.

8.2.10 Conversion of clustered epWBGs into partial Fault Trees

A typical example for the conversion from an epWBG into a partial fault tree is shown
below and should be self-explanatory given the above comments.

8.2.11 Combining partial Fault Trees into one overall Fault Tree

As root node for the fault tree the event “Problem occurs” was chosen, a nondescript,
but generic name for all system failures identified in the OHA.

Investigation of the epWBGs revealed that all failures could be classified under the
topics “Human failure”, “Information not transceived” and “No data from device”. The
resulting head of the Fault Tree is shown in Figure 8.8.

Then the partial fault trees were sorted according to their respective classification.
The resulting fault tree comprises about 150 Nodes. This is of a size often encountered
in industrial fault tree analyses and the risk calculation can be handled by the usual
methods. The fault tree represents only a certain level of refinement of the system,
however, this refinement suffices to allow an arguably realistic assessment of risk
given the usual probabilistic independence assumptions in fault tree analysis. We

168 8 Ontological Hazard Analysis — Uberblick

| #MNIC lower than expected

| NIC fails] [Wiringfails]

Abbildung 8.6: Resulting Fault Tree

would caution however, that such independence assumptions must themselves be
carefully analysed in order to ensure they hold. Our analysis did not go this far.

8.2 A Case Study: OHA for an Automotive Communications Bus System

169

1
NodeCount(Network)
<
DesignNodeCount(Network)

SN

1.1 1.2
NodeCount(Network) DesignNodeCount(Network)
1.1.1
Decrease in
NodeCount(Network)
1.1.1.1 1.1.1.2
Intact(NIC) = Intact(Wiring) =
FALSE FALSE

Abbildung 8.7: epWBG formulated to describe deviation

[Problem occurs I

[Human failure Information not transceived l No data from device J

Abbildung 8.8: Head of Fault Tree

