KAPITEL 9

OHA-Beispiel — Automobil-Kommunikationsbus
Peter B. Ladkin 2010

9.1 Introduction

There are many introductory hazard analyses (HazAn) of engineered system designs
to be found in safety textbooks. A pressure vessel with relief system is considered in
[27]. A pressure vessel is also the first example in [29] which then includes a small
motor overheating example and follows with a running example of a pressurised-
water reactor, interspersed with a small example of a departure-monitoring device
for a single-track railway. An event tree from an analysis of the Cassini spacecraft
mission is shown as an example in [3], but the first worked-through examples are of
an example reactor protection system, and the Storm Surge Barrier in the Rotterdam
waterway system. Their third example is of a partially-redundant electrical supply
system. Human operation and human error is considered in all three.

While these examples illustrate techniques developed over decades for hazard and
risk analysis, it is typical that examples from the process industries are used, for this
is often where such techniques are either pioneered or matured (Fault Tree Analysis
started with the Minuteman ICBM systems in the US, but is more well-known from
its use in the nuclear-power industry, for example [72]). The general techniques are
not subject-matter-specific, but the characteristics of mechanical or electrical systems
admit the introduction of specific techniques, such as statistical analyses, which
work with the general properties of those systems, for example reliability analyses

172 9 OHA-Beispiel — Automobil-Kommunikationsbus

of mechanical system components, whose failure modes are mostly known and
surveyable. In contrast, statistical analyses of designs such as programmable electronic
components whose behavior is driven by often-complex software is notoriously
difficult. Hard constraints bound the assessment of the reliability of software through
testing to a probability of failure per operational hour of O(10~% [48], whereas the
desired reliability of the component of which the programmable electronics is part
may well be in the range of O(10~?) or lower.

There are some books which describe the adaptation of preferred methods in
other industries to programmable systems, for example [60] describes the adaptation
of the process-industry method of Hazard and Operations Analysis, HAZOP, to the
assessment of software.

9.2 Ontological Hazard Analysis

Here, we perform the beginnings of a Preliminary HazAn (PHA) on an example from
digital electronics, a generic communications bus for road transport vehicles. We
use Ontological Hazard Analysis (OHA), a technique devised by the author for PHA
whereby the system is conceived at a high level of abstraction, at which the vocabulary
within which system phenomena are to be described is made explicit and adhered
to rigorously. The usual techniques of potential hazard elicitation may be applied
(in the example here, HAZOP [60]) to obtain a list of hazardous happenstances
(HazHapps). These HazHapps obtain names in the vocabulary. Some of them may
be expressible in terms of the vocabulary to hand, in which case meaning postulates
containing these definitions are formulated. Some of them may not be. These are
noted for working in further refinement steps. During the process, some convenient
assumptions ultimately constraining the design of the artifact may be made, such as
here that a data packet contains an integral number of fields, and fields are always
of the form <attribute,value>. These constraints must be met at design time (by
simulation if not hard-coded), otherwise the HazAn may be invalid.

At the end of an OHA stage, then, we have

(a) an explicit vocabulary, the refinement-stage primitives

(b) alist of hazardous happenstances (events or states), HazHapps, with associated
Safety Requirements (SafeRegs: mitigation and avoidance techniques), if such

9.2 Ontological Hazard Analysis 173

have been identified already;

(c) alist of Meaning Postulates, definitions of vocabulary which have been introduced
during the course of the HazAn,

(d) assumptions made during the course of the analysis, typically about the form of
data objects, which simplify the analysis,

(e) introduced, as yet undefined, vocabulary (new primitive vocabulary) needed for
expressing the HazHapps identified at this stage.

The goal during the stage will have been to be as complete as possible in compiling
(b), in particular to the point of identifying SafeReqs; to get as many of the new
primitives defined in terms of the stage primitives by meaning postulates as possible;
and to keep the number of new primitives to a minimum.

When the stage is finished, a new refinement stage must be chosen, and then
worked through similarly. A new refinement stage is chosen by selecting a HazHapp,
or a collection of intuitively related HazHapps, from the list in (b) which we can
call the focus HazHapps for the new refinement stage, and expressing them as far as
possible by means of the new primitives in (e) and through additional new primitives
introduced for the purpose (and added to those already in the list in (e)). The
goal will be, as above, to identify SafeReqs associated with the focus HazHapps,
or to reformulate intuitively-similar focus HazHapps in terms of new primitives
and meaning postulates which capture their common features. A subsidiary goal
is simultaneously to reduce the new primitives as far as possible through deriving
meaning postulates. When the OHA reaches a stage at which most of the identified
HazHapps have associated SafeRegs, it can be terminated. Those HazHapps without
associated SafeReqs must be retained and analysed at a later HazAn stage, or which
there will typically be many in a complete system development. The assumptions
listed in (d) must be adhered to, or eliminated, through further development, at pain
of invalidating the Preliminary HazAn.

OHA works on a hierarchy of abstractions, in the same way in which hierarchical
decomposition is used in software design [56], and in digital system design in general,
in order to obtain similar benefits. Just as waveforms are interpreted as bits, and
sequences of bits are interpreted as bytes, and bytes are interpreted as various com-
plex data structures; or bytes are interpreted as assembly-language commands, and
sequences of assembly language commands are used to implement memory-variable
assignments, loops, if-then-else statements, or Horn-clause declarative programs

174 9 OHA-Beispiel — Automobil-Kommunikationsbus

in Prolog, and so on, and these programs in turn are regarded as implementing a
higher-level specification of what the software should do, so OHA works with a similar
hierarchy, guided not by ease of general expression (as in SW-design), but by ease of
expression specifically of HazHapps. Thereby we control the complexity of the PHA
in the same manner in which it is controlled by hierarchical decomposition in SW
specification and design. We assume some level of familiarity with hierarchical design
and decomposition [56].

The formal application of these techniques in specification is known as formal
refinement. Examples of rigorous formal refinement applied to specifications, in aid
of the mathematical proof of correctness of certain algorithms, may be found in [30],
[18], [37]. Formal refinement of this type goes way beyond the level of rigor we have
found to be helpful in OHA.

OHA works, at any level of its hierarchy, with objects. Objects have properties,
as well as relations with each other. At a specific level, (types of) objects must be
explicitly defined, as well as which properties of them will be considered and which
relations between them. This constitutes the vocabulary for (a).

A summary of two OHAs, which were very different as they progressed, one
using HAZOP and Causal System Analysis, the other using finite-automata formal
refinement, may be found in [65]. This paper recounts work published in detail in
[64, 66].

9.2.1 A Generic Digital-Communication Bus

We work here through an example from programmable electronics, a generic digital-
communication bus such as found in modern road transport vehicles, as illustrated in
Figure 1. Sensors,which measure current values of such phenomena as force at wheels,
rotational speed of wheels, position of steering frames, and braking, produce digital
values which are transmitted via the bus to command elements such as steering,
motor and brake controllers. These controllers in turn generate commands which
are conveyed in digital form to actuators which implement these commands at the
steering, motor or brakes. The communication bus is a common medium through
which all this information is conveyed. A single batch of information from a single
device which is transmitted as a unit will be called a message. Each device, sensor,
controller or actuator, is connected to the bus through a Network Interface Controller

9.2 Ontological Hazard Analysis 175

(NIC). Among the tasks of a NIC is to format the information in a form appropriate
for bus transmission, for example, adding a unique identifier for the source of the
message and its intended recipients. The NIC also coordinates the act of transmitting
the message, for example, waiting for an appropriate time slot if the bus is time-
triggered; also synchronising its internal clock with those of other NICs to that all
NICs have a similar understanding of which times belong to which time slots. Non-
time-triggered NICs will also implement a protocol to avoid or reconcile collisions
between messages on the bus, when two NICs try to transmit almost simultaneously.

Wheel Speed Brake Power
Sensor Sensor
NIC NIC
Communications
Bus
NIC NIC NIC
Left Front Braking Steerin

Wheel Command 9

. Module

Suspension Module

Abbildung 9.1: A Communications Bus for Road Vehicle Electronics

At this point, according to IEC 61508 (see [40, Figure, p9]), The IEC 61508 Life
Cycle), one may start to perform a preliminary assessment of the possible failures and

176 9 OHA-Beispiel — Automobil-Kommunikationsbus

dangerous failures of the communication bus. This is often called by system safety
engineers a Preliminary Hazard Analysis, or PHA.

At this point, though, we do not know very much about the communication bus or
the system (the environment) in which it operates. I have said it is for use in road
transport, and mentioned brakes, steering and motor, but most of the details of how
it is intended to operate are not yet specified.

Elsewhere, we have made much of the difference between a system state (a property
of a system) and an event (a change of state, represented best by two states, a before
state and an after state) [39]. For the purpose of analysing how an accident can
possibly result from system behavior, it will first be helpful not to distinguish: let me
call either a state or an event a happenstance and call a happenstance hazardous
if the system environment could be such that an accident will inevitably ensue. For
example, a failure to steer left on command could inevitably result in an accident, if
the road bends sharply left, and has a thick wall on its right hand side! Similarly, a
failure to brake on command inevitably results in an accident if there is a wall right
in front of the vehicle. We will refer to such happenstance, the failure to deliver these
commands, as a hazardous happenstance.

We can imagine that, if a command is given to apply the brakes, and that command
is not received by the brake actuators, and there is only this one command-path,
through messages in the communication bus, between brake command and actuation
(that is, no alternative physical connection, say through a hydraulic-mechanical
system), that the brakes will not be applied. I think as above that we can say that this
represents a potential danger; if the brakes do not go on when a driver commands,
this is a hazardous happenstance. Similarly, if the steering is only commanded through
the communications bus, and not also by an alternative physical connection, and
the command to steer left is not received by the steering actuator(s), then we can
imagine the vehicle going straight on, and leaving the road, instead of steering left
through a bend in the road; again a potential danger. So we may judge that, in these
cases, failure to deliver a specific message is a hazardous happenstance.

To continue, we may imagine that if a command to brake harder arrives at the brake
actuator and is read as brake more lightly, that this is a hazardous happenstance. Or
if a command to steer left arrives at the steering actuator as a command to steer right.
So we may judge that, in some cases, the corruption of a message during transmission,
or a false reading of its contents by an actuator, is a hazardous happenstance.

9.3 Level 0 177

We may conclude that loss of a message may be a hazardous happenstance, and
corruption of a message may be a hazardous happenstance, as also may be the
incorrect reading of a message by a NIC. These may not be the only hazardous
happenstances.

We can’t go much more into the details of which kinds of loss are hazardous, and
which kinds of corruption, without knowing precisely what is connected to the bus,
or the subcomponent specifications. If we are designing a generic bus, along with
generic NIC specifications, which is going to be used in varied applications by various
manufacturers, we know at this point only that message loss and message corruption
are generic hazardous happenstance.

It may occur to us now to ask what kinds of properties, of what kinds of things
(messages), loss and corruption are. We are speaking about information which is
conveyed by messages: commands, values and so on. We are speaking, then, of the
informational content, the digital interpretation, of whatever passes along the medium
as the message is transmitted, and not necessarily of the precise waveform (for it
usually is a continuous waveform) which is actually put on the medium by electronic
means by the NICs. Further, we might know there are arbitration difficulties, such as
when a waveform lies on the boundary of what counts as a one bit and what counts
as a zero; furthermore we might know of so-called Byzantine errors, in which, say, a
waveform on an arbitration boundary is interpreted as a one bit by one device and a
zero bit by another [7]. So we can decide at this point if we are dealing with messages
as physical waveforms, or whether we are dealing with messages as sequential,
structured information, containing values in data types, protocol information, and
so forth, which may be considered, in the usual digital reduction, to be sequences of
bits.

9.3 Level 0

We start typically with the highest level, which we call Level 0. Level 0 is a very
abstract view of the system. As in hierarchical design, a lower level will define objects
and properties at a higher level by means of its own objects and properties. In
hierarchical design, a natural number may be defined in terms of an positive-integer
number range, and an integer number range in terms of sequences of bits, with
operations on bits implementing the mathematical operations on integers. It must

178 9 OHA-Beispiel — Automobil-Kommunikationsbus

then be proved verified that the operations on bits indeed implement the operations
on integers at the higher level. Similarly, it must be verified in OHA that the lower
level objects, properties and relations indeed implement the higher level objects,
properties and relations.

If we were to consider a message as a waveform, its description would be physically
quite complicated, and we would have to worry about properties such as attentuation,
arbitration boundaries, and so forth. If we are to consider a message as consisting
of information in the form of data, ultimately encoded as bits, then its description
is much simpler. We must say only what data is to be carried, and not be concerned
at this stage with how this is carried out; we will only be concerned with hazardous
happenstance. This is the highest, most abstract, level, the natural place at which to
start an OHA.

Indeed, we have so far considered messages very abstractly. Messages may be lost,
for whatever reasons. A message is lost if it is sent, but no part received by the receiver.
Message-content may be corrupted; that is, may be read differently by the receiver
than was written by the sender, for whatever reasons. What else could happen with
messages at this level of abstraction? Symmetrically to loss, they could be created:
that is, a message received that was not sent. This may seem somewhat fanciful, until
one considers that duplicating a message generates a message that was received (in
the second version) but not sent (only the first was sent). Whether messages could
be generated in the system, say, by outside electrical influences on the medium, is a
matter for more detailed consideration at later stages.

We start by defining the formal vocabulary at Level 0. That is to say, object types,
properties which objects of that type are to have, and relations between objects of
those types.

9.3.1 Obijects

So far, we have the following types of objects: medium (Bus), NICs, messages (msgs).
There is only one Bus, but there are typically many NICs and many msgs. Thus are
Bus, NIC, msg types of objects, not names for specific objects (although Bus could be
considered as one, since there is just one Bus). We now consider the properties which
objects of these types may have.

9.3 Level 0 179

9.3.2 Properties

Bus. The bus itself transmits messages. This is a relation to messages, though, not a
property of the bus itself. A property which the bus has is its integrity: is it doing its
transmissive job, or is it broken, cut or otherwise compromised?

We thus have the following property: Integrity(Bus), where we write the object
type in the parameter position; it might be preferable to write, similarly to type
declarations in programming languages, Integrity(X : Bus).

NIC. The NIC assembles messages from its attached device and transmits the as-
sembled messages to/on the bus. It also receives messages from the bus, disassembles
them and transmits relevant information further to its attached device. If it performs
this task as it is specified, and (we hope!) thereby designed to do, it retains its integrity.
If not, it has lost it.

We have the following property: Integrity (NIC). Again, it might be preferable to
write Integrity(Y : NIC), but it seems to me that we can just as well use obvious
names such as NIC1, NIC2, etc, to indicate both an object and its type, at this level
of discourse. I shall do so, also with msgs, without being much concerned about the
exact syntax.

Msg. As we discussed, a message has content. It also has length, or size. Since the
system is real-time, it can be that certain messages (for example, to steer, or to brake)
have a deadline by which they must reach their receiver NIC.

We have the following properties: Content(msg), Size(msg), Deadline(msg).

Objects ‘ Properties ‘

Bus Integrity

NIC Integrity

msg Content
Size
Deadline

Tabelle 9.1: Objects and Their Properties

180 9 OHA-Beispiel — Automobil-Kommunikationsbus

9.3.3 Relations

A NIC may be attached or not to the Bus. We take a NIC to be attached when it
receives messages intended for it as receiver, and transmits on the Bus messages
which its attached device sends. Similarly a message may be on the Bus, when the
waveform corresponding to the message is travelling along the medium. A message
may be in a NIC, when it is being assembled or disassembled. It is also sent by a NIC
and received by a NIC, during which time it, or rather part of it, is also on the Bus.

We thus have the following relations: Attached(NIC,Bus), On(msg,Bus),
In(msg , NIC), Sending(msg , NIC), Receiving(msg , NIC).

The relations may be arrayed in a table as shown in Figure 9.2, in which an X
indicates that the relation has the object type as an argument:

Relation ‘ Bus ‘ NIC ‘ msg ‘

Attached X X

On X X
In X X
Sending X X
Receiving X X

Tabelle 9.2: Relations and Their Object Types

Tables 9.1 and 9.2 constitute the definition of the vocabulary for (a) of Level 0.

9.3.4 Meaning Postulates

I have noted above that the property of being Sent or begin Received by a NIC entails
that a msg is at the same time On the Bus. Also that it is not yet In the NIC. This is part
of what we mean by asserting Sent or Received. It could be otherwise: we could have
intended received to mean that a msg is in the NIC, having been completely read from
the Bus by the NIC, and therefore no longer partly On the Bus. But we didn’t choose
this option; we chose the former. We have to mark this distinction somehow: we have
to say what we mean by use of the words. We do this in part through enumerating
logical relations between the relations, properties and objects we have thus denoted.

9.3 Level 0 181

We shall call these logical assertions of part-meaning meaning postulates.

We have so far the following partial meaning postulates (they are partial because
they do not define an equivalence of meaning, but only state an implication):

Sending(msg , NIC) = On(msg, Bus)
Receiving(msg , NIC) = On(msg, Bus)

We may, if we wish, also define certain states of the system in terms of what
has happened and what is to happen, using tense-logical operators Sometime-Past,
Always-Past, Sometime-Future and Always-Future. We have to be somewhat careful,
however, because use of the tense-logical operators does complicate the logic of
the situation somewhat: tense logic is much less well-developed in terms of usable
automated or semi-automated tools and techniques than predicate or propositional
logic. If we do use tense logic, we might wish to define the following meaning
postulates for further properties that might turn out to be of interest:

Sent(msg , NIC) < NOT Sending(msg , NIC) AND Sometime-Past(Sending(msg , NIC))
Recd(msg, NIC) < Sometime-Past(Receiving(msg, NIC)) AND NOT On(msg , Bus)

These two predicates are not symmetric. It should be obvious that a message that
has been Received by its NIC is no longer On the Bus. However, a message can have
been Sent and still be in transit, so it is On the Bus. Or it might have been Sent and
already Received, in which case it is no longer On the Bus. And we shall see, later,
that not expressing the status of the message on the medium after it has been Sent
will enable us to express the loss of a message, which we have already identified as
a hazardous happenstance, and will do so again when we apply the HAZOP guide
words, the keywords, to the vocabulary we have.

We must always remember, though, that the point of the current exercise is to
identify and analyse hazards that occur with the communications bus, which is
concerned with the danger of real-life use, and not to axiomatise all properties
of the bus, which is a maybe useful exercise for developing a facility with logical
expression, but rather more than may strictly be needed to find out how things may
go dangerously wrong.

182 9 OHA-Beispiel — Automobil-Kommunikationsbus

9.3.5 Using HAZOP

We have a vocabulary for expression of some high-level communication-bus properties.
We need to start identifying hazardous happenstances, HazHapps, in the operation of
the bus, which are either describable with this vocabulary or with an extension of the
vocabulary. We need to control any extension. We do so here by applying HAZOP to
expressions in the primitive vocabulary.

HAZOP is a technique which, in its original form, depends crucially on group-think
[60]. We have found that, embedded in a refinement process, one person working
alone, and checking results with colleagues, can mostly bring those colleagues to
consensus on hisher application of HAZOP. We surmise that this is because much of
the work is performed by the refinement process, the HAZOP being used to just to
provoke thought of hazards. If a hazard is missed at one stage, we have experienced
that it is likely to turn up at a later stage. We have no theoretical grounds for this
observation. The phenomenon does reduce the personpower resources needed to
perform a satisfactory HazAn.

There are examples of OHA in which HAZOP turned out to be entirely superfluous
to the HazAn, in which a demonstrably-complete set of Safereqs were derived at Level
0, and the formal refinement consisted of making the system more concrete (i.e.,
the usual goal of refinement) while preserving the SafeReqs through the refinement.
Actual executable code was derived, in SPARK, and each refinement step was formally
proved [64].

In another example, a communications bus similar to this, the primitive vocabulary
started rather large, and the extension of vocabulary through HAZOP in OHA was
considerable [66]. The extension was somewhat controlled by using causal system
analysis of the indentified HazHapps with Extended Partial Why-Because Graphs
(epWBG), which were then used to derive a Fault Tree for the system in a collaborative
student project. The refinement had three stages, during each of which HAZOP and
causal flow analysis with epWBGs was used. The Fault Tree contained about 170 event
nodes. It is likely in this case that the HazAn would have benefitted from collaborative
development, just as the Fault Tree conversion benefitted from the group work.

9.3 Level 0 183

Interpreting HAZOP Guide Words for the Level 0 vocabulary

We recall that HAZOP uses the following guide words as hints towards system
properties which might be hazardous or lead to hazardous happenstance:

No
More
Less
As well as
Part of
Reverse
Other than
Early
Late
Before
After
Faster
Slower
Where else

The first step in a HAZOP is to combine these guide words with system properties
and relations to derive more properties and relations which may be associated with
possible hazardous happenstance. Here, I state the results.

No applies to Integrity (Bus) and Integrity (NIC). Either these devices retain their
integrity, or they have lost it. Exactly what this might mean can be left to more
detailed steps further down in the hierarchy. No other guide words seem to lead to
obvious properties of further concern involving integrity.

Concerning Content(msg), Size(msg) and Deadline(msg), there is more to be said.

No — Content(msg) seems to be an assertion that the msg has no content. Does
it mean that the msg has been lost? Maybe. It may still be that some details of the
msg, say, its ID, are present, but that the substantial content, that which is or will be
important to the receiver, is not longer present.

More — Content(msg) seems to be an assertion that the msg contains additional
material from that which was inserted by its compiling NIC. Has the msg been
corrupted? That depends on whether the additional material is an integral copy of

184 9 OHA-Beispiel — Automobil-Kommunikationsbus

material that is already contained in the msg. Or may it be that additional, meaningless
information has been added?

Less — Content(msg) seems to be an assertion that the msg has lost some of its
original content. If that has happened, the msg has been corrupted, without doubt.
To say this, we need a new property of a msg, namely

Corrupted(msg)

As-Well-As — Content(msg) doesn’t seem to carry much of a meaning further than
More-Content.

Part-of — Content(msg) seems to mean that the msg has lost some of its original
content, i.e., the same as Less — Content(msg). We shall use Part-of — Content(msg)
to express this.

Reverse — Content(msg) seems to mean that the contents of msg have been rever-
sed. How could this be interpreted? If the message is based on attribute-value pairs
(a pair <attribute, value of attribute>, such as <receive-status,ready> or <receive-
status,occupied>, then it doesn’t matter what order the attributes and values are
sequenced in the message. On the other hand, if the message is based on fixed fields,
where a value is associated with an attribute because of its sequence position in
the message, then it could be that values are read as values to the wrong attributes.
This would be a form of corruption of the msg. It could also be avoided by using
appropriate formatting, such as attribute-value pairs!

Other-than — Content(msg) seems to mean that the content is other than it should
be, i.e., that the msg has been corrupted. It could also means that an extra message
appears (On the Bus, or Received by a NIC) that has not explicitly been generated —
a phantom.

The keywords Early, Late, Before, After seem more to relate to timing properties
of the msg itself, and not its content. It could be, of course, that specific fields in the
msg do contain timing information, and this timing information could be distorted as
the keywords imply. But to interpret this is a task for later, when the msg has been
broken down into its component parts in the hierarchical decomposition. At most,
what could be said at this level about this possibility is that certain timing fields do
not contain the information with which they were written, and this is a form of msg
corruption.

9.3 Level 0 185

Where-else — Content(msg) might seem to mean that the msg has been interpreted
(decomposed) by a NIC for which it was not intended. We could express this assertion
by saying, in logic, that the msg has been received by some NIC that was not its
intended receiver:

Recd(msg ,NIC 1) AND NOT (IntendedReceiver(msg) = NIC 1)
To say this, we would need to introduce the new function IntendedReceiver.

In summary, consideration of the combination of HAZOP keywords with Content has
led to the introduction of the new property, respectively function, Corrupted(msg) and
IntendedReceiver(msg). We may consider here, as a question of symmetry, whether
we need a function name for the Sender of a message similar to IntendedReceiver.
A message is created on the Bus when Sending, and it is the unique NIC which
is Sending which is the sender. So the identity of the sender is fixed by the act of
Sending, namely NIC 1 is the sender of msg 1 precisely when:

Sender(msg 1) = NIC1 < Sent(msg 1, NIC1)

showing that we have the appropriate vocabulary already to define the function
Sender, which we did not have in the case of IntendedReceiver. Exactly how an
IntendedReceiver is identified is a matter for later stages in the refinement.

Next we consider the combination of keywords with Size(msg).

No — Size(msg) could mean that the message has no size, in other
words all substantial content has been lost. However we take this, it
seems to be the same as the interpretation of No— Content(msg). Si-
milarly, More — Size with More — Content, Less— Size with Less— Content,
Part-of — Size with Part-of — Content. Reverse — Size seems to have little meaning.
Other-than — Size seems to mean something similar to More — Size or Less — Size.
The keywords Early, Late, Before, After, Faster, Slower and Where-else seem to have
no obvious interpretation with respect to the property Size.

Next, the combination of keywords with Deadline(msg). The ordering keywords
would have an interpretation here: Early — Deadline(msg), Late — Deadline(msg),
Before — Deadline(msg), After — Deadline(msg), Faster — Deadline(msg),
Slower — Deadline(msg). The combinations here seem to suggest the followi-
ng. Messages can have an early deadline as well as a late deadline: that is, they are
to be processed within an Interval(msg) =< Earliest(msg), Latest(msg) >, and that
the message can be received outside or partly outside this interval and thus not be

186 9 OHA-Beispiel — Automobil-Kommunikationsbus

processed within the intended time. This may perhaps be best expressed through
two predicates Outsidelnterval(msg) and PartlyOutsidelnterval(msg), leaving the
details of early/lateness and partially early/late for further steps in the hierarchical
decomposition. These new predicates are taken here to be primitive and may become
defined in later stages in which the length of the msg is taken into account.

Considering Deadline then, we have identified one more property (or functi-
on) of a message, Interval(msg), and two assertions Outsidelnterval(msg) and
PartlyOutsideInterval(msg), which can be involved in hazardous happenstance.

Considering the relations Attached, On, In, Sending, Receiving, I state without
argumentation that the interpretable keywords are restricted to Not and Partly. Not-
Attached and Partly-Attached may mean that the NIC is not attached, or appears only
intermittently to be attached, to the medium. Partly-Sending, Partly-Receiving suggest
that a msg is being incompletely put on the Bus, respectively read from the Bus, by
the NIC. These appear to be the only happenstances which we may form using the
keywords which do not occur normally in the course of normal operations.

9.3.6 Hazardous Happenstance: Summary and Discussion

The combinations of HAZOP keywords with the objects, properties and relations at the
first level, combined with our preliminary considerations, have given us some insight
into what can go hazardously wrong. We have identified the following hazardous
happenstances.

NOT Integrity (Bus) . This can be expressed, as here, using the usual logical operators
on a property which is already in the vocabulary.

NOT Integrity (NIC) . This can be expressed, as here, using the usual logical operators
on a property which is already in the vocabulary.

Lost(msg) We try to express this hazardous happenstance in the vocabulary we have.
We start by considering what being lost might mean. The answer seems obvious:
the message was sent but never received by the receiver. We have to distinguish
this happenstance from the situation in which the message has been sent but
not yet received, because it is still in transit on the Bus. We may express the
difference using the vocabulary we already have, namely that in the second,
normal, case, the message has been sent, not yet received, and is on the Bus;
but in the first case, the message has been sent, not yet received, and is not on

9.3 Level 0 187

the Bus — it has disappeared from the system:

Sent(msg) AND NOT(Received (msg , IntendedReceiver(msg))) AND NOT(On(msg , Bus))

showing that we have already developed vocabulary sufficient to define
Lost(msg). We may wish to introduce this term specifically via a meaning
postulate:

Lost(msg)
=
Sent(msg) AND NOT(Recd(msg , IntendedReceiver(msg))) AND NOT(On(msg , Bus))

Corrupted(msg) To talk about message corruption, it seems new vocabulary must be
introduced, since it cannot easily be rephrased in the vocabulary we have. One
way is to introduce a new predicate for it directly, as here. Another way may
be to consider fundamental properties of messages, and rephrase Corrupted
in terms of these fundamental properties. For example, it is very likely we
shall want to speak during the refinement of the content of a message, what
fields it has and so forth. We can anticipate this by introducing the function
Content(msg).

We can consider how we might want to express, logically, the content of a message:
not its actual format on the Bus or in a NIC, but its intended meaning. We have noted
above in the discussion of the application of keywords that an attribute-value-pair
representation of messages can mitigate or eliminate comprehension issues following
from a reordering of messages. So we can keep in mind that Content(msg) can be
usefully expressed, when it comes to it, as a list of attribute-value pairs.

We may use the notion of Content(msg) to define when a message has been
corrupted. Given that we have introduced the tense-logical operator Sometime-Past,
we can surely say this: a message has been corrupted if its Content is not the same as
it was sometime in the past:

Sometime-Past(Sending(msg 1, NIC 1) AND Content(msg 1) = Y) AND NOT(Content(msg 1) = Y)

188 9 OHA-Beispiel — Automobil-Kommunikationsbus

We can maybe make this a little slicker by introducing a function term for original
content of a message, using the meaning postulate:

OriginalContent(msg 1) =Y
=
Sometime-Past(Sending(msg 1, NIC 1) AND Content(msg 1) =Y)

Then to express message corruption all we need say is

NOT(OriginalContent(msg 1) = Content(msg 1))

And we can introduce the vocabulary Corrupted by means of a meaning postulate
for it:

Corrupted(msg 1) < NOT(OriginalContent(msg 1) = Content(msg 1))

Moving on, we have identified possibly hazardous happenstance in

Recd(msg, NIC 1) AND NOT (IntendedReceiver(msg) = NIC 1)

We can call NIC1 in this case an inappropriate receiver, and introduce a meaning
postulate for such a term:

InappropriateReceiver(msg , NIC 1)
~
Recd(msg,NIC 1) AND NOT (IntendedReceiver(msg) = NIC 1)

We have identified possibly hazardous happenstance, for which we have introduced
new predicates, in OutsideInterval(msg) PartlyOutsideInterval(msg)

but we are not able at this stage to introduce meaning postulates or other devices
to explicate the meaning of these terms, for the reason that they are intended to refer
to a timing interval which is part of the internal Content(msg) which is for us at this

9.3 Level 0 189

point an atom, an object with no defined internal structure. The definition of these
terms must wait until a later refinement stage.

We have identified hazardous happenstance in

NOT Attached(NIC)
partly — Attached(NIC)
partly — Sending(msg , NIC)
partly — Receiving(msg , NIC)

The first of these, NOT Attached(NIC), is self-explanatory, as well as expressable in
the vocabulary we already have. The second, meant to refer to intermittent operation,
can possibly be expressed using tense-logical operators: it was attached, then it
wasn’t, then attached again, then not, and so on. The problem we would have is to
distinguish this intermittent attachment from the case in which the NIC was once not
attached, then attached again, and everything now works fine. This doesn’t seem to
be a distinction we can make with the current vocabulary. Best is maybe to introduce
a new predicate Intermittently Attached(NIC).

and to postpone its definition until later stages of the refinement. Concerning
Partly-Sending and Partly-Receiving, these seem to describe situations in which the
message to be transmitted by the NIC is not the same as what goes on the Bus,
respectively what was on the Bus is not the same as what is Received by the NIC.
Again, these seem best definable at a stage at which we know in more detail how a
NIC assembles data for sending or how it parses received data. We can introduce new
terms CorruptedSending(msg , NIC) CorruptedReceiving(msg , NIC).

whose definitions are to be given at later stages of the refinement.

9.3.7 Hazardous Happenstance: Final Determination and Extended
Vocabulary

We have the hazardous happenstances defined in terms of existing vocabulary

NOT Integrity (Bus)
NOT Integrity (NIC)

190 9 OHA-Beispiel — Automobil-Kommunikationsbus

as well as the hazardous happenstances defined in terms of meaning postulates

Lost(msg)
Corrupted(msg)
InappropriateReceiver(msg , NIC)

and the new, as yet undefined, terms for hazardous happenstances that must be
defined at later stages in the refinement:

Outsidelnterval(msg) PartlyOutsideInterval(msg) Intermittently Attached (NIC) CorruptedSend

So we have identified eight forms of hazardous happenstance. In order to reach
this determination, we have introduced new functional terms

Sender(msg)

IntendedReceiver(msg)

the former with a meaning postulate, and the latter to be defined at a later stage in
the refinement. We have also introduced new relations with the help of tense logic:

Sent(msg , NIC) Recd(msg , NIC)

This new vocabulary, four types of terms, is added to the existing vocabulary
Bus, NIC, msg, Integrity (twice: of Bus and of a NIC), Content, Size, Deadline as
we proceed to further stages of the refinement. We are now finished with the first
iteration of the OHA.

We summarise the results, in the form of the lists (b)—(e), for Level 1. There are no
new object types identified at Level 1, so we omit List (a).

In order to reach these HazHapps with as-yet-undefined Safety Requirements, we
defined a number of meaning postulates, List (c), as well as made some assumptions
which must be carried as assumptions through further levels until they may be made
concrete during design, List (d). These are as follows.

9.3 Level 0 191

’ HazHapp Safety Requirement
NOT Integrity (Bus) Not yet identified
NOT Integrity (NIC) Not yet identified
Lost(msg) Not yet identified
Corrupted(msg) Not yet identified
InappropriateReceiver(msg , NIC) | Not yet identified
Outsidelnterval(msg) Not yet identified
PartlyOutsidelnterval(msg) Not yet identified
Intermittently Attached (NIC) Not yet identified
CorruptedSending(msg , NIC) Not yet identified
CorruptedReceiving(msg , NIC) Not yet identified

Tabelle 9.3: List of Hazardous Happenstances for Level 0, and Associated SafeReqs

Sending(msg , NIC) = On(msg, Bus)

Receiving(msg , NIC) = On(msg , Bus)

Sent(msg , NIC) < NOT Sending(msg , NIC) AND Sometime-Past(Sending(msg , NIC))

Recd(msg , NIC) < Sometime-Past(Receiving(msg , NIC)) AND NOT On(msg , Bus)

Sender(msg 1) = NIC 1 < Sent(msg 1, NIC 1)

Lost(msg)
=
Sent(msg) AND NOT(Recd(msg , IntendedReceiver(msg))) AND NOT(On(msg , Bus))

OriginalContent(msg 1) = Y
=
Sometime-Past(Sending(msg 1, NIC 1) AND Content(msg1) = Y)

Corrupted(msg 1) < NOT(OriginalContent(msg 1) = Content(msg 1))

InappropriateReceiver(msg, NIC 1)
=
Recd(msg, NIC 1) AND NOT (IntendedReceiver(msg) = NIC 1)

Tabelle 9.4: Meaning Postulates for Level 0

192 9 OHA-Beispiel — Automobil-Kommunikationsbus

None so far

Tabelle 9.5: Assumptions on which HazAn is based, Level 0

In order to make the meaning postulates and define the vocabulary involved in
identifying the HazHapps, as well as stating the assumptions, we introduced some
further vocabulary that is not yet itself the subject of meaning postulates; that is,
primitive vocabulary that must be defined by meaning postulates in later stages, in
lower Levels of the refinement (or in the design). This vocabulary is as follows.

Sender(msg)

IntendedReceiver(msg)
CorruptedSending(msg , NIC)
CorruptedReceiving(msg , NIC)

Tabelle 9.6: New Vocabulary to be Defined at Later Stages, Level O

9.3.8 Hazardous Factor Mitigation and Avoidance

At this stage, we have a vocabulary of objects (object types), their properties and
relations, and we have identified within this vocabulary eight forms of hazardous
happenstance(HazHapp). Each of these hazards must be addressed: either avoided
or mitigated at this very level, or retained as to-be-addressed in further refinement
levels. At this point, we can perform no effective mitigation or avoidance, because
each of the HazHapps is an atom (a non-structured situation) or a Boolean construct
of atoms. We need to pass to the next refinement level in order to start addressing
HazHapp mitigation or avoidance.

9.4 Level 1: The First Refinement Level

We select the HazHapp Lost(msg) as the driver of the refinement. We need to add
structure to messages in order to say what it means for a message to be lost, and
maybe to perform a causal system analysis of lost messages; to identify all of the

9.4 Level 1: The First Refinement Level 193

causal factors which lead or may lead to a lost message, as well as their causal
interrelations.

After we have performed the causal system analysis, we may be able to assign
likelihoods to causal factors which appear in the analysis, and may be able to combine
those likelihoods to estimate a likelihood of a message being lost. The acceptable like-
lihood of this HazHapp will generally be derived from the acceptable risk determined
in a IEC 61508-conformant process.

9.4.1 Moving to Level 1: Structuring Messages and Message-Passing

At this Refinement Level 1, we could assume a bus protocol which does not rely on
NICs synchronising clocks, but is opportunistic, or event-triggered, as in Ethernet. An
opportunistic bus protocol works roughly as follows. A NIC, say NIC1, which wants to
transmit msg1, first tests the Bus to see if there is a message already on it. If not, NIC1
may begin to transmit. It may be that another NIC, say NIC2, has already started
transmitting msg2, but that msg2’s wave front has not yet reached the Bus connector
of NIC1 and so was not sensed as NIC1 tested the Bus. NIC1 starts transmitting
msg1, and the wave front of msgl and msg2 will subsequently collide somewhere.
The result of two colliding messages we may take always to be nonsense. So such
an opportunistic bus protocol must define a method of collision detection, collision
communication (certainly to the senders and receivers of the colliding messages,
maybe to every NIC), and resolution (which in the case of Ethernet has NIC1 and
NIC2 retrying, after waiting distinct or likely-distinct periods of time).

An alternative transmission protocol which we could consider, called a time-
triggered or round-robin protocol, requires the NICs to synchronise their internal
clocks. They can do this, and maintain synchronisation, within certain error bounds
using known and well-analysed algorithms. Time slots are defined by the protocol,
one slot for each possible transmission. So, if one had 40 NICs, one could define a
cycle size of 40 time slots, and NIC-k would be able to put its message on the bus in
the k’th time slot of each cycle.

Round-robin scheduling has no collisions, by construction, so no need for collision
detection and resolution, provided that the clock synchonisation is reliable (the
boundaries of adjacent time slots may be separated from each other by a period
equal to or greater than the error bound). However, there may be NICs that need to

194 9 OHA-Beispiel — Automobil-Kommunikationsbus

transmit only rarely, and other NICs which transmit in every cycle. Most of the slots of
those NICS which transmit rarely will not be used. Thus there can arise a problem of
efficiency: a NIC which needs to transmit must wait for its slot, and in the meantime
a lot of free capacity flows by as it is waiting.

This is not the place to discuss thoroughly the merits and demerits of various bus
protocols, but we do need this much of an overview in order to specify the vocabulary
which we introduce at Level 1.

9.4.2 Level 1 General Definitions and General Meaning Postulates

Time-triggered or event-triggered, messages are usually decomposed into packets.
Packet-oriented protocols work best when packets are of more or less uniform size,
so let us assume this will be a criterion in devising the decomposition of a message
into packets. We shall need a new relation, saying that a packet constitutes part of a
message. We rearrange the syntax to bring the predicate to the front, followed by its
subject and object, as usual:

ConstitutesPartOf (pkt , msg)

A packet may be an arbitrary division of a message, such as the pages of a book
are an arbitrary division of its paragraphs, but we may on the other hand insist that
a packet is a meaningful part of a message; that is, that it contains specific fields,
and all the information in each field, of the message. If the fields are expressed as
<attribute,value> pairs, that means that a packet contains whole <attribute,value>
pairs; none of them is split across more than one packet. If we wish, we may introduce
a predicate to say that a specific field, which we may consider abstractly as an
<attribute,value> pair, is contained in a specific packet:

FieldContainedIn(field , pkt)

which will have binary values True or False, and not a third value Partly-True,
Partly-Somewhere-Else. We may also be specific as to what a field is:

field(z) < there is an attribute, and there is a value, such thatz =< attribute,value >

9.4 Level 1: The First Refinement Level 195

If we wish to go this route, we can define all manner of attributes and values during
refinement. At Level 1, before we have developed these specifics, attribute and value
could become new object types, but we may equally well choose to leave this to a
later refinement step, and do so.

It is usual for information that is required to be reliable to include some reliability
checks, for example a simple parity check, or some more complex CRC calculation.
We can refer to such a calculation generically as a Checksum. So a packet can be
considered to have a Checksum, new vocabulary introduced now, and this Checksum
will be valid or invalid, a firm binary choice, leading to the formulation that Checksum
be a function with defined binary values valid, invalid. Later on in the development,
when Checksum has been implemented as a specific function, it may be determined
from empirical knowledge of the algorithm used to implement Checksum what
the chances are that a given Checksum will be invalid. This may be used in a risk
calculation.

We have said that packets should have a more or less uniform size. This suggestion
comes from decades of experience with computer networks, and it seems wise to take
it over. Since a message consists of an integral number of packets, and the packets
have more or less uniform size, it seems reasonable to take the Size of a msg to consist
of the number of packets which constitute it:

Size(msg) = #{pkt | ConstitutesPartOf (pkt , msg) }

This of course is a meaning postulate for the predicate Size in terms of the new
objects (object types) defined at Level 1.

We can also say something more now, informally, about what a NIC must do. At the
original level, a NIC was an atom. Here we can say that, in its Sender role, it has the
task of decomposing a msg into pkts, or maybe composing all the <attribute,value>
pairs which are to go into a specific msg into pkts of more or less uniform size, and
then putting those pkts on the Bus in some random or meaningful order. And in its
Receiver role, it has the task of Receiving all the pkts comprising a particular msg
and sending all the <attribute,value> pairs comprising that msg onwards to their
intended destinations. We could pack all this information about the actual tasks of
a NIC into Level 1, along with the decomposition of msgs into pkts, but experience
with refinement has shown that it is preferable to perform one refinement task at
once, and leave others to a sequential refinement step. So we keep in mind here what

196 9 OHA-Beispiel — Automobil-Kommunikationsbus

the decomposition of a msg into pkts entails for the function of a NIC, and resolve to
refine a NIC in a further refinement step, but not in this one.

I note here that certain protocols, such as the Internet protocol suite TCP/IP, take
different design decisions from those we here take. TCP/IP divides data into packets,
for example, without paying attention to where the packet boundary occurs with
respect to meaningful content (fields). TCP/IP just chops data up, as the pages of a
book chop up the prose of the book’s author. TCP relays the packet with a sequence
number, equivalent to the page of a book, which is used to reassemble the entire
data stream from its packets at the destination (indeed, this is a major function of
the receiving code of TCP). The representation of fields as <attribute,value> pairs,
and the requirement that <attribute,value> pairs are contained within precisely one
packet and not split across packets, obviates the need for sequence numbering for
message-reassembly. The meaningful contents of a msg are just the collection of the
meaningful contents of its pkts; order is not relevant.

This observation enables us to derive another meaning postulate, this time for
Received. A msg has been Received by a NIC just in case all its <attribute,value>
pairs have been read by the NIC, which is the case precisely when all pkts constituting
the msg have been read by the NIC, and the NIC has composed all pkts back into the
msg of which they constitute part:

Recd(msg , IntendedReceiver(msg))
=
ForAll pkt[(ConstitutesPartOf (pkt , msg) =
(Recd(pkt , IntendedReceiver(msg)) AND Composed(msg , IntendedReceiver(msg))]

9.4.3 Level 1 Hazard Analysis for Lost(msg)

The structure and vocabulary we have introduced so far allowed us to introduce a
meaning postulate for the HazHapp Lost(msg), which is, we recall, that Lost(msg) is
equivalent to

Sent(msg) AND NOT(Recd(msg , IntendedReceiver(msg))) AND NOT(On(msg , Bus))

9.4 Level 1: The First Refinement Level 197

This constrains in useful ways our considerations as to what constitutes losing a
msg. Let me illustrate.

What are the ways in which a pkt could not successfully reach its destination? Let
us consider the temporal progress of a pkt; it will get pulled up short somewhere.
First, suppose the pkt is not put on the Bus by its NIC. It was supposed to be put on
the Bus, but it wasn’t.. We have some of the vocabulary to say this already, but not
yet which NIC a pkt belongs to. Let us remedy this, also with reception:

Sender(pkt) = Sender(msg) where ConstitutesPartOf(pkt , msg)
IntendedReceiver(pkt) = IntendedReceiver(msg) where ConstitutesPartOf(pkt , msg)

We have one criterion, the earliest, for non-reception of a msg: the pkts weren’t put
on the Bus by their NIC. But now look at the meaning postulate for Lost: it contains a
conjunct which says the msg was Sent! We define here the Sending of a msg by the
meaning postulate

Sent(msg) < ForAll pkt(ConstitutesPartOf (pkt , msg) = Sent(pkt))

So if a pkt doesn’t make it onto the Bus from its NIC, this does not constitute part
of its associated msg being Lost. But we don’t want this failure mode just to evaporate
out of our considerations: do we have a HazHapp, part of which it does constitute?
Yes, we do. Putting pkts correctly on the bus has to do with the HW or SW Integrity
of the NIC, and we have already identified NOT Integrity(NIC) as a HazHapp at the
first level. It is covered: we will deal with it under that rubric.

So the msg was put on the Bus: all of it, all its pkts. But it’s not there now, and it
wasn’t Received by its IntendedReceiver. So if it’s not On the Bus now, that means
either the time has gone by which the waves of the pkts will have taken to reach
IntendedReceiver, or one is still within the time within which some pkt should still
be in transit but it’s not. Than can only happen in two ways. (1) If the bus has been
physically compromised, broken or at least damaged enough to attentuate the signal
so that it is indistinguishable from background, then the pkt will disappear in this
sense. (2) If there is a collision, and this collision goes undetected, then the pkt as
information will have disappeared; its contents will have been incorporated into the
noise resulting from the collision. Event type (1) is encapsulated in the HazHapp

198 9 OHA-Beispiel — Automobil-Kommunikationsbus

NOT Integrity (Bus), so we will have this case covered when we perform the hazan
for NOT Integrity (Bus). Event type (2) remains a possibility not (yet?) covered else-
where. Let us denote it by the here-unanalysed primitive UndetectedCollision(pkt).

So, the situations other than UndetectedCollision(pkt) with which we are concer-
ned here have been reduced to the case in which the pkts reach their destination
IntendedReceiver(pkt) = IntendedReceiver(msg), but in which

NOT Recd(msg , IntendedReceiver(msg))

A msg is Corrupted if some, but not all, of the pkt successfully reach their destination
IntendedReceiver(msg), or if some of the <attribute,value> pairs in msg become
altered. So we may usefully deal here with one of the cases of Corrupted(msg) as
well.

If a pkt reaches its destination IntendedReceiver(pkt) but is not Received, what
could be the reason? Either the pkt is faulty or the NIC that is the Intende-
dReceiver is faulty. Again, this latter falls under the already listed HazHapp
NOT Integrity (IntendedReceiver(pkt)) so the case with which we are finally con-
cerned is that the pkt is faulty. There are two ways in which a pkt can be faulty,
namely that its Checksum is Invalid, or that one or more of its <attribute,value>
pairs has been modified, along with the Checksum, so that a different message is read
- and thought valid! - than was sent. We may choose methods to implement Checksum
in a later refinement step to make the chances of this as small as we like. What we
should do here is note that it can theoretically occur, and mark it as a HazHapp.

Modified(pkt) <

We note that a modified pkt, because its Checksum is valid, will be Recd by an
IntendedReceiver which retains its Integrity. So a Modified(pkt) does not contributed
to a Lost(msg), as Lost is defined above. Therefore we are left only with the following
interpretation of the part of the HazHapp associated with Lost and Corrupted that is
not already covered by other listed hapzhapps

TherelsSome pkt(ConstitutesPartOf (pkt , msg) AND Checksum(pkt) = Invalid)

9.4 Level 1: The First Refinement Level 199

9.4.4 Level 1 Rearrangement of HazHapps

We have seen that there is some commonality between Lost and part of Corrupted,
namely pkts whose Checksum is invalid, and there is another part of Corrupted
which concerns a different phenomenon, in which <attribute,value> pairs have been
modified, and the Checksum accordingly.

The core HazHapp identified at Level 1 that characterises the first phenomenon we
may call

VisiblyCorrupted (msg)
=
TherelsSome pkt(ConstitutesPartOf (pkt , msg) AND Checksum(pkt) = Invalid)

The second phenomenon we have already denoted above by the predicate Modified.

We may thus remove Lost(msg) and Corrupted(msg) from our list of HazHapps
and replace them by VisiblyCorrupted(msg), because they are both definable in
terms of VisiblyCorrupted. The progress in so doing arises from the ease with which
mitigation or avoidance procedures may be conceived, and the formulation of safety
requirements which involve such procedures.

9.4.5 Level 1 HazHapp Avoidance and Mitigation

Procedures with which to deal with an occurrence of VisiblyCorrupted(msg), that
is, a message which contains visibly corrupted packets, are ubiquitous in network
protocol engineering. One of the most well-known, also used in the Internet reliable-
transmission protocol TCP, is called the Sliding Windows protocol. All relevant
features of Sliding Windows are known, including reliability rates for various versions.
Here is not the place to discuss it; there are many texts. We refer for example to [68].

Procedures to deal with Checksums not correctly identifying Modified packets
may be found, along with reliability estimates, in textbooks on error-detecting and
error-correcting codes, for example [47].

Thus at Level 1 we have categorised four major classes of HazHapps, Lost(msg),
Corrupted(msg), Modified(msg), and UndetectedCollision(pkt). We performed a

200 9 OHA-Beispiel — Automobil-Kommunikationsbus

small vocabulary change to unify phenomena associated with the first two, introdu-
cing the predicate VisiblyCorrupted.

We have identified known avoidance and mitigation methods in the literature for
the phenomena subsumed under Modified and VisiblyCorrupted. To rule out the
HazHapps Modified and VisiblyCorrupted, we may designate these methods as Safety
Requirements (SafeReqs). The SafeRegs are listed in a table, and this list is carried
through all refinement steps and into the design and implementation stages.

HazHapp \ Safety Requirement

VisiblyCorrupted(pkt) Reliable Transmission, e. g. Sliding Windows
UndetectedCollision(pkt) | Reliable Collision Detection, e.g. as in Ethernet
Modified (pkt) Not yet identified

Tabelle 9.7: Partial List for Level 1, HazHapps and Ensuing Safety Requirements

HazHapp (informal description) \ Hazard Class ‘

pkt not successfully put on Bus by NIC | NOT Integrity (NIC)
pkt lost in transit without collision NOT Integrity (Bus)

Tabelle 9.8: Partial List for Level 1, Identified HazHapps Retained for Processing Later

9.4.6 Summary of Level 1 Results

A key feature of OHA is the careful control of the expression of system characteristics,
including hazards and failures, by using a controlled vocabulary along with features of
logical languages. A second key feature is the use of refinement, to provide more detail
about the system and simulatneously extend the vocabulary, guiding this refinement
by the classification of hazards, and steps to identify and catalog mitigation and
avoidance.

We started by considering a generic communications bus for a road vehicle which

uses this bus for control and sensorics, and the hazards that could arise through use
of this bus for these purposes. We identified at Level 0 necessary vocabulary with

9.4 Level 1: The First Refinement Level 201

which to talk about these hazards, and we identified hazards, but could not analyse
them, since they appeared at Level O as primitive vocabulary.

In OHA, it is recommended not to bite off too much at once: not to attempt to
introduce in one step new concepts and vocabulary to handle all HazHapps identified
at Level 0. We thus proceed to Level 1 by picking one HazHapp and analysing it
further.

At Level 1, we considered in detail the HazHapp Lost(msg). We were able to
classify some of the phenomena which might lead to a lost message under other
HazHapps, namely NOT Integrity (NIC) and NOT Integrity(Bus). One part of the
intuitive phenomenon associated with Lost(msg) that was not assimilated to these
other HazHapps turned out to have much in common with the phenomena associated
with another HazHapp Corrupted(msg), and so we extended consideration to the
similar characteristics involved also in Corrupted(msg). The remaining part of the
phenomenon of Corrupted(msg) was identified through introducing a new property.

The vocabulary was realigned to relinquish use of Lost and Corrupted in favor of
the use of VisiblyCorrupted and Modified, which predicates align exactly with known
mitigation and avoidance procedures with well-known reliability characteristics, of
which use can be made in the risk analysis which will follow the hazard analysis.

At this stage, we have identified the following HazHapps which have not been
handled at Level 1 and therefore will become the subject of further refinement steps:

Unanalysed HazHapps for Further Refinement After Level 1

NOT Integrity (Bus)
NOT Integrity (NIC)
InappropriateReceiver(msg , NIC)

Outsidelnterval (msg)

PartlyOutsidelnterval(msg)
Intermittently Attached(NIC)
CorruptedSending(msg , NIC)
CorruptedReceiving(msg , NIC)
UndetectedCollision (pkt)

Tabelle 9.9: Partial List for Level 1, Already-identified HazHapps to be Analysed

202 9 OHA-Beispiel — Automobil-Kommunikationsbus

We list the new object types, meaning postulates, assumptions, and new primitives
at Level 1.

’ Object ‘ Intended Interpretation ‘

’ field \ <attribute,value> pair ‘

Tabelle 9.10: List for Level 1, New Object Types Introduced

Since we have a new object type, field, we can renounce the meaning postulate for
Field(x).

Size(msg) = #{pkt | ConstitutesPartOf(pkt , msg)}

Recd(msg , IntendedReceiver(msg))
=
ForAll pkt[(ConstitutesPartOf (pkt , msg) =
(Recd(pkt , IntendedReceiver(msg)) AND Composed(msg , IntendedReceiver(msg))]

Size(msg) = #{pkt | ConstitutesPartOf (pkt , msg)}

Sender(pkt) = Sender(msg) where ConstitutesPartOf(pkt , msg)

IntendedReceiver(pkt) = IntendedReceiver(msg) where ConstitutesPartOf(pkt, msg)

Sent(msg) < ForAll pkt(ConstitutesPartOf (pkt , msg) = Sent(pkt))

Modified(pkt) <

VisiblyCorrupted(msg)
=
TherelsSome pkt(ConstitutesPartOf (pkt , msg) AND Checksum(pkt) = Invalid)

Tabelle 9.11: List for Level 1, Meaning Postulates

A pkt consists of an integral number of fields

Tabelle 9.12: List of assumptions Introduced at Level 1

Refinement continues. To identify the next Level (Level 2), we consider the Haz-
Happs in Figure 6, and use these as guidance.

9.5 Level 2 Refinement 203

ConstitutesPartOf (pkt , msg)
FieldContainedIn(field , pkt)
IntendedReceiver(msg)
UndetectedCollision(pkt)

Tabelle 9.13: List of New Primitives Introduced at Level 1

9.5 Level 2 Refinement

There is one HazHapp in Figure 6 identified with the Bus, namely NOT Integrity (Bus).
We have already considered the possibility of undetected collisions, and identi-
fied a safety requirement to mitigate those, so the pkt losses associated with
NOT Integrity (Bus) for which safety requirements remain to be formulated are those
associated with physical-electrical failures such as short-circuits and breaks in the
cabling. These can also be handled through known techniques from electrical en-
gineering. They cannot be ruled out, because physical activities such as someone
deliberately slicing a cable cannot be ruled out, but they can be detected. Considering
NOT Integrity (Bus) thus leads us to the following Level 2 refinement.

’ New Objects ‘ New Properties ‘ New Relations ‘

’ None \ None \ None ‘

Tabelle 9.14: List for Level 2, New Entities Added

HazHapp ‘ Safety Requirement

NOT Integrity (Bus) | Electrical-anomaly detection, e.g., arc-fault
circuit interrupters

Tabelle 9.15: Partial List Level 2, HazHapps and Ensuing Safety Requirements

204 9 OHA-Beispiel — Automobil-Kommunikationsbus

Unanalysed HazHapps for Further Refinement After Level 2

NOT Integrity (NIC)
InappropriateReceiver(msg , NIC)
Outsidelnterval(msg)

PartlyOutsidelnterval(msg)
Intermittently Attached (NIC)
UndetectedCollision(pkt)
CorruptedSending(msg , NIC)
CorruptedReceiving(msg , NIC)

Tabelle 9.16: Partial List Level 2, Identified HazHapps to be Analysed Later

9.6 Deciding on Level 3

There are only two sorts of objects, msg and NIC, remaining in the cumulative list of
HazHapps to be analysed and mitigated. Of these, there are HazHapps associated with
NIC or msg with NIC, and there are two HazHapps associated purely with msg. The
HazHapps Outsidelnterval and PartlyOutsidelnterval refer to deadlines and timing
of messages. The other HazHapps refer either to a NIC alone, or to processing of a
msg through a NIC. Since a msg is a data object, and not an active agent (it does not
execute actions), we can usefully regard CorruptedSending and CorruptedReceiving
as hazards associated with unsuccessful actions of the NIC, and therefore reflecting
on the Integrity of the NIC, which in general terms means the ability of the NIC to
carry out its required functions in an appropriate time. There are two ways Integrity
might therefore fail. One way is that a required processing function is not carried out.
The other way is that appropriate timing is not achieved. That appropriate timing
constraints are not adhered to also reflects on msg deadlines, which in turn are asso-
ciated so far with Outsidelnterval(msg) and PartlyOutsidelnterval(msg). In the other
direction, that a msg does not encounter its receiving NIC in time does not necessarily
reflect on the Integrity of the receiving NIC. So there appears to be an asymmetry, in
that considering the Integrity of a NIC may well lead to modification of the HazHapps
designated as Outsidelnterval and PartlyOutsidelnterval, but considering these latter
will not reflect in any particular way on the Integrity of the receiving NIC.

These reflections point us firmly in the direction of considering Integrity (NIC),

9.7 Overall Summary 205

and refining the required operations of the NIC at the next refinement level, Level 3.
Considering msg timing constraints will occur, then, at a further level of refinement
beyond this.

The exact functioning of the NICs has at this point not been addressed at all.
Nothing has been said about what a NIC shall do. Indeed, nothing has been said
about the protocol under which the Bus will run and which parts of the protocol will
be the responsibility of the NICs to ensure. We can observe here that, if the bus runs
under a purely event-driven protocol, such as Ethernet, timing constraints on message
reception are driven purely by the timing constraints of the attached equipment,
whereas if the protocol is partly or completely time-triggered, there are possibilities
for a message to arrive out-of-slot or partly-out-of-slot, thereby a HazHapp, which
phenomena are purely internal to the communications and do not have to do with
constraints of the attached equipment.

We shall leave the HazAn at Level 3 and beyond to the reader.

9.7 Overall Summary

We have illustrated here Ontological Hazard Analysis, which proceeds by controlling
the vocabulary in which system properties can be expressed, starting at a very high
level with few object types, properties and relations and extending the vocabulary only
by necessity as HazHapps are identified which need to be expressed. Extending the
vocabulary, and the expression within that vocabulary, gradually is a process known
in the formal methods community as formal refinement. The method we have used
here to identify HazHapps is HAZOP [op. cit.]. The use of formal refinement enables
cumulative tables to be built of hazards identified Level by Level, and mitigating
methods to be applied in the implementation, assuring coverage of as many hazards
as can be expressed using the controlled vocabulary, and bringing the advantages of
hierarchical development [op. cit.] to hazard analysis.

Other methods than those illustrated here may be used in OHA. For a very similar
example, in which a different starting vocabulary was used, along with HAZOP,
and further with Causal Flow Analysis using Extended Partial Why-Because Graphs
(epWBAs), see [66].

We summarise finally the HazHapps which have been dealt with already, along
with the safety requirements that were identified as mitigation.

206 9 OHA-Beispiel — Automobil-Kommunikationsbus

HazHapp Safety Requirement

VisiblyCorrupted(pkt) Reliable Transmission, e.g. Sliding Win-
dows

UndetectedCollision(pkt) | Reliable Collision Detection, e.g. as in
Ethernet

Modified (pkt) Not yet identified

NOT Integrity (Bus) Electrical-anomaly detection, e.g., arc-fault

circuit interrupters

Tabelle 9.17: Partial List of HazHapps With Safety Requirements at Levels up to and
including 2

Unanalysed HazHapps for Further Refinement After Level 2

NOT Integrity (NIC)
InappropriateReceiver(msg , NIC)

Outsidelnterval(msg)

PartlyOutsidelnterval(msg)
Intermittently Attached (NIC)
UndetectedCollision(pkt)
CorruptedSending(msg , NIC)
CorruptedReceiving(msg , NIC)

Tabelle 9.18: Partial List up to and including Level 2, HazHapps to be Analysed Later

In order to reach these HazHapps with Safety Requirements, we defined a number
of meaning postulates, as well as made some assumptions which must be carried
as assumptions through further levels until they may be ,Adcashed out,Atli, made
concrete. These are as follows.

In order to make the meaning postulates and define the vocabulary involved in
identifying the HazHapps, as well as stating the assumptions, we introduced some
further vocabulary that is not yet itself the subject of meaning postulates; that is,
primitive vocabulary that must be defined by meaning postulates in later stages, in
lower Levels of the refinement (or in the design). This vocabulary is as follows.

9.7 Overall Summary 207

Sending(msg , NIC) = On(msg, Bus)

Receiving(msg , NIC) = On(msg, Bus)

Sent(msg , NIC) < NOT Sending(msg , NIC) AND Sometime-Past(Sending(msg , NIC))

Sent(msg) < ForAll pkt(ConstitutesPartOf (pkt , msg) = Sent(pkt))

Recd(msg , NIC) < Sometime-Past(Receiving(msg , NIC)) AND NOT On(msg , Bus)

Recd(msg , IntendedReceiver(msg))
=
ForAll pkt[(ConstitutesPartOf (pkt , msg) =
(Recd(pkt , IntendedReceiver(msg)) AND Composed(msg , IntendedReceiver(msg))]

field(z) < there is an attribute, and there is a value, such that x =< attribute,value >

Size(msg) = #{pkt | ConstitutesPartOf (pkt , msg)}

Sender(msg 1) = NIC 1 < Sent(msg 1, NIC 1)

Lost(msg)
=
Sent(msg) AND NOT(Recd(msg , IntendedReceiver(msg))) AND NOT(On(msg, Bus))

OriginalContent(msg 1) = Y
=
Sometime-Past(Sending(msg 1, NIC 1) AND Content(msg 1) = Y)

InappropriateReceiver(msg, NIC 1)
=
Recd(msg, NIC 1) AND NOT (IntendedReceiver(msg) = NIC 1)

Modified(pkt) <

VisiblyCorrupted(msg)
=
TherelsSome pkt(ConstitutesPartOf (pkt , msg) AND Checksum (pkt) = Invalid)

Sender(pkt) = Sender(msg) where ConstitutesPartOf(pkt , msg)

IntendedReceiver(pkt) = IntendedReceiver(msg) where ConstitutesPartOf(pkt , msg)

Tabelle 9.19: List for Levels up to and Including Level 2, Meaning Postulates

208 9 OHA-Beispiel — Automobil-Kommunikationsbus

A field consists in an <attribute,value> pair

A pkt contains an integral number of Fields

A msg consists of an integral number of pkts

Tabelle 9.20: List for Levels up to and Including Level 2, Assumptions

Sender (pkt); Sender(msg)
IntendedReceiver(pkt); IntendedReceiver(msg)
CorruptedSending(msg , NIC)
CorruptedReceiving(msg , NIC)
ConstitutesPartOf (pkt , msg)

Composed(msg , IntendedReceiver(msg))
Checksum(pkt)

FieldContainedIn(field , pkt)

Tabelle 9.21: List for Levels up to and Including Level 2, New Vocabulary to be Defined
Later

Tables 9.13-9.16 represent the results of the OHA so far. Further development will
modify these four tables. The output of the Preliminary Hazard Analysis performed
according to OHA is then the starting vocabulary along with these four tables (as
modified through the entire analysis).

9.8 Conclusion

We have performed part of a Preliminary Hazard Analysis of a generic communication
bus for a road transport vehicle, using the method Ontological Hazard Analysis, OHA.
PHA is still a process in which, to put it bluntly, one is asked to sit down and think of
as many hazards that can befall a system in operation as possible. The goal is to think
of and write down as many as one can. OHA uses formal or semi-formal refinement
and strict control of vocabulary in order to control the PHA.

We have used one application of HAZOP, in order to start the HazAn at Level O.
The HAZOP principle of groupthink was not applied; although checking through

9.8 Conclusion 209

colleagues is necessary as always, we have found that the major benefits of OHA come
from the control that semi-formal refinement brings, and not through subtleties in
application of HAZOP guidewords (indeed, it is dependent on the example whether
HAZOP be used, and bring benefits, in an OHA).

Most of the results of the HazAn to this point have resulted through the effects of
refinement and its control.

The HazAn we have started here using OHA, and not yet concluded, show that a
Preliminary HazAn, at even a high level of abstraction such as this, can be sophistica-
ted, requiring sophisticated control, in this case through formal refinement, and an
audit trail.

