
KAPITEL 14
Software-Richtlinien für IEC 61508
Peter Ladkin 2010

14.1 Comments on Part 3, Annexes A and B

The method labels in the Annexes are a mix of overly-general with overly-specific. For
example, „Formal Methods“ is a very general category, referring to the general use
of mathematical and logical methods for assessing and designing software products.
There are hundreds of formal methods, from methods of specification to methods
of assessment of designs, of source code, and of machine code, code development
methods, and derivation of test suites. In contrast, „Reliability Block Diagrams“ is
a specific technique for assigning and calculating overall reliabilities of composite
system parts given reliabilities of components, and assuming independent failures of
those components.

Proposal 1: The table labels be annotated by commentary. Size of commentary
would range from paragraphs (RBDs) to short essays (Formal Methods).

Proposal 1A: Rather than the commentary be inserted into the standard document
Part 3, one could insert the commentary in a separate document or tool, such
as the Uni Southampton/Uni Newcastle’s Resilience Knowledge Base.

I understand that IEC 61508 is the IEC’s second-biggest-selling document over
some period of time and there are lots of industry sectors asking for guidance. At
present, that guidance is not offered through between-revision activities of the
national committees, but through various commercial, uncontrolled activities



308 14 Software-Richtlinien für IEC 61508

such as the training courses offered by various TÜV organisations (predominant-
ly in Germany), Ron Bell’s IET London Workshop on SIL determination, and
the IET Cambridge course, both of the these latter predominantly HW-oriented
and touching on SW methodology hardly at all. Specific guidance, that may be
dynamically modified between revisions of the standard, is obviously needed,
specifically on SW. The RKB arose out of the EU 6th Framework project ReSIST:
Uni Newcastle was responsible for content, Uni Southampton for the engine.
Were a utility such as the RKB to be used, there would likely need to be a
formal agreement between owners and maintainers of the tool and the IEC.
This could perhaps be accomplished through the EU 6th Framework program
or its successor.

Proposal 2: The table entries refer to methods at the same general level of abstracti-
on, performing similar tasks.

For example, „Reliability Block Diagrams“ is at the same „level“ as SW Fault
Trees; both assess the reliability of composites from reliability data on com-
ponents. It could be argued that source-code design at the level of state ma-
chines (Lustre) is at a similar level to SPARK annotation; neither are directly
comparable to B specifications. Requirements specifications using Z are in
principle comparable with requirements specifications using SPECTRM. Safety
requirements specifications in OHA are comparable with safety requirements
specifications in those two languages. Code generation from Lustre specificati-
ons (as in SCADE) is at the same level as code generation from rigorous-UML or
from rigorous-Simulink. Compilation from SPARK source and compilation from
MISRA C source are roughly comparable activities. Each particular category
of methods has its own strengths and weaknesses, which need to be taken
into account when using them. It makes sense to list the category-theoretic
strengths and weaknesses. (I do not think it makes sense to attempt to list those
of individual tools. The standard should not be working on the level of detail of
individual tools.)

Proposal 2A: A classification of methods be used, similar to that suggested by ex-
ample. The Annex table entries refer to the labels in that classification and
recommendations, if thought wise, be made similarly.



14.2 A Proposal for Revised Requirements and Guidance on SW in Part 3 309

14.2 A Proposal for Revised Requirements and Guidance on
SW in Part 3

The current Part 3 recommends methods to be used in developing SW for a specified
SW SIL level. The SW SILs are, according to the definitions, measures of the rate of
dangerous failures caused by the software behavior. It is believed by many on the
national committees that Part 3 sets no requirements on achievement, or demonstrati-
on of achievement, of specific SW SILs, primarily because well-known science shows
it is not possible ex post facto to evaluate through testing any SW SIL requirement
above SIL 1 (and in practice including SIL 1 also). Thus, the only requirement on SW
consists of recommendations on methods to be used during the development process.

One may inquire about any demonstrated connection between use of specific me-
thods as listed in Annexes A and B and the quality (in terms of dangerous failures per
operational hour) of the resulting SW. Various specific companies such as Praxis HIS
in the UK have instrumented their methodology over decades and can demonstrate
delivered code quality, and improvement of that quality, over a period of time. Orga-
nisations such as Airbus and Eurocopter accumulate data on system behavior as a
matter of safety routine, and metrics on code quality generated by, for example, use of
SCADE are in principle available from this source. However, these metrics include as
input not only the methods used, but a specific corporate culture as well as continuity
in personnel. This is specifically true of CMMI-rated organisations, and it may be
regarded as a weakness of CMMI that rated organisations do not deliver reliable
metrics on quality achieved. I know of no reliable metrics for ultrahigh software
quality (SIL 1 or higher) that depend only on the methods used.

The Part 3 requirements on SW development thus do not achieve the objective
of SW SILs in the general case. Since organisations and culture are not part of the
requirements, there is no demonstrated connection between the Part 3 requirements
and the specified resulting SW quality. Because it must fail in this specific task of
achieving SW SILs, and no other criteria for SW system properties are addressed, Part
3 does not specify any required demonstration of SW system properties at all. This
situation is regarded by many (including me) as disastrous. It may be remedied, as
follows.

Proposal A. An unambiguous, rigorous Functional Requirements Specification (FRS)
be required. The FRS needs to be checkable for (i) consistency, and (ii) relative



310 14 Software-Richtlinien für IEC 61508

completeness. It be required that it is so checked and the methods and results
to appear in the safety case.

Here, (i) is unproblematic in the current state of the art and state of the tools,
but there are various ideas around what one means by (ii). (For example,
Nancy Leveson has some ideas, and I have some orthogonal ones.) The idea
of completeness is that there be assurance that all scenarios which can lead to
hazards (by which I mean situations environment plus system state - in which
there is a higher risk, not the 61508 sense of hazardous event = accident) have
been accounted for in the FRS. Further, there be a requirement in the part of the
standard which concerns operations that all hazards which are unaccounted for
in the FRS be handled appropriately in operations (after-the-fact mitigation).
(This particular requirement would entail a major change in industrial behavior.
I personally know of various situations in which appropriate hazard analysis
was not accomplished in light of operational discovery of hazards, and accidents
ensued. One public example is the in-flight fire and subsequent destruction,
with loss of life, of an RAF Nimrod reconnaissance aircraft in Afghanistan in
2006, but there were no SW issues identified in that case.)

Proposal B. (i) The SW Architecture/Design Spec be rigorous. (ii) There be a formal,
rigorous, correct demonstration that the SWA/DS fulfils the FRS.

Proposal C. (i) If the SW is written using a higher-level programming language than
machine code, there be defined a language to be called the Executable Source
Code Level. (For C, or Modula, or Ada, or SPARK, source code would be the
ESCL. For Java, one would have the option of specifying the ESCL as Java
source, or as bytecode. For declarative languages such as Prolog, defining the
ESCL might be a tricky. But the proposal is that there be one at some level.) (ii)
The SW at the ESCL be rigorously, correctly demonstrated to fulfil the SWA/DS.

Proposal D. Compilation is defined to be an operation that translates ESCL into
object code (OC) - the executable bytes that sit on the kit. Proposal: there be a
rigorous, correct demonstration that the OC fulfils the ESCL.

Proposal E. There be a rigorous, correct demonstration that run-time errors do not
cause or contribute to causing dangerous failures. One may do so by eliminating
whole classes of them, as with SPARK, or by trapping and handling the raised
exceptions.

Proposal Cluster F. Testing. Here, I think there is a bigger problem that has not yet



14.3 How the Proposals Will Achieve Higher SW Quality 311

been acknowledged. For, even though statistical testing cannot practically show
the achievement of a SW SIL at the currently-defined levels, one does get some
kind of assurance of SW fitness for purpose by even routine testing. The hard
part the problem here is to make precise what kind of assurance this is, and
specify how it is achieved.

Here a personal story and a moral. When I was writing mostly declarative code in
the language REFINE, I wrote a time-interval calculation system over a few months.
I did unit testing of the functions as I was writing them, performing (a) sanity
checks, and, more thoroughly, (b) boundary-case calculations. Integration of the
entire system took a programmer, who had no idea what I had written, two hours,
mostly performing (a) and (b) at the integration level. She found one boundary case
I had missed, I fixed it, and the code was on demo at the AAAI annual conference
the next day. It has been used, I don’t know how much, by the USAF in the project
management part of its KBSA, and I have not heard of any errors. It is not a big
system, but it would have been far, far more consumptive of time and effort to
develop it in C. The point is that my testing was goal-directed, semantics-directed,
and effective. Semantics-directed testing for (a) and (b) seem to me to be needed for
any system. One could argue that they would be supplanted by effective SPARK-like
formal methods; maybe so. But they or an equivalent are somehow needed; it is not
the case that routine testing is without benefit for ultra-highly dependable systems.

There needs to be some kind of story on what unit testing and integration testing
achieve and what is to be shown concerning that achievement. I don’t have a well-
formulated story at this point.

14.3 How the Proposals Will Achieve Higher SW Quality

The proposals enuciated above achieve a certain quality in SW developed by systema-
tically excluding certain kinds of errors.

A rigorous FRS proved consistent avoids the error that various requirements con-
tradict each other in subtle ways and no system can be built that satisfies the FRS.

A rigorous FRS proved complete, according to some notion of completeness, avoids
requirements failures, in which an operational situation arises that was not envisaged
and is not covered by the specification, and the system performs contrary to safety.



312 14 Software-Richtlinien für IEC 61508

The requirements failures that will be avoided are those that would fall within the
particular concept of completeness.

A rigorous, correct demonstration that SWA/DS fulfils FRS assures that the functio-
nal design of the SW will achieve the behavior specified in the FRS.

A rigorous, correct demonstration that ESCL code fulfils the SWA/DS shows that
there are no coding errors.

A rigorous, correct demonstration that OC fulfils the ESCL shows that there are no
compilation errors.

Using these proposals, SW will be delivered whose behavior is completely specified
(according to some explicit notion of complete), and whose compiled code is gua-
ranteed to fulfil the specification (except for certain explicit forms of run-time error
which may not have been excluded during development, but which may be mitigated
through system design).

Of course, the guarantees and demonstrations may be incorrect, but the levels of
correctness achievable in assurance activities of this sort is much higher than the
levels of correctness currently achieved in industrial code for safety critical systems
(currently estimated by some who may be presumed to know at 1-3 errors per 1
KLOSC). For example, by making heavy, continual use of assurance during code
development, Praxis HIS has demonstrated code quality of up to two orders of
magnitude higher than the 1-3 errors per KLOSC just mentioned.

14.4 Software SILs

Proposal I: A series of SW SILs be developed that can be demonstrated by practical
statistical testing to have been achieved by specific SW. The highest-level SIL be
out of range (for example, pdfh lower than O(10−5)).

Proposal II: The SIL levels be defined through order-of-magnitude requirements,
rather than the precise but arbitrary boundaries used at present

The SIL levels that could be defined according to this criterion, given that we
talk about ultra-high dependability could start at O(10−3).

Proposal III:



14.4 Software SILs 313

SW SIL 1 = pdfh of O(10−3)

SW SIL 2 = pdfh of O(10−4)

SW SIL 3 = pdfh of O(10−5)

SW SIL X = pdfh of O(10−6) or lower (X indicates extreme)
Proposal IV: The achievement of SW SIL 1-3 be demonstrated through rigorous

statistical testing. Evidence of SW SIL X be presented through (i) demonstrated
achievement of SW SIL 3 through statistical testing, plus (ii) evidence of the
quality (correctness) of the assurance activities carried out via Proposals A-E.

Using the exponential statistical model of software failure, which is the current state-
of-the-art statistical model, Proposal IV involves statistical testing for the following
periods of time:

• for 95% confidence level: 3 x pdfh

• for 99% confidence level: 4.6 x pdfh

The concept of dangerous failure means a failure which satisfies some external
condition, namely that of being dangerous: the property of being dangerous or not is
defined by the system in which the software is used, not by any internal property of
the software. Thus in any statistical assessment of the software, it is failures which
must be counted, since it is not possible to distinguish dangerous failures from failures
with respect to the software alone.

Combining Proposals III and IV (i), and using the exponential statistical model of
software failure, along with the remark that it is failures which count for the purpose
of statistical assessment, the periods of time required for statistical testing without an
observed failure are:

• For SW SIL 1:

– 3,000 hours of statistical testing without failure for 95% confidence

– 4,600 hours of statistical testing without failure for 99% confidence

• For SW SIL 2:

– 30,000 hours (≈ 3 years, 5 months) of statistical testing without failure
for 95% confidence

– 46,000 hours (≈ 5 years, 3 months) of statistical testing without failure
for 99% confidence

• For SW SIL 3:



314 14 Software-Richtlinien für IEC 61508

– 300,000 hours (≈ 34 years, 3 months) of statistical testing without failure
for 95% confidence

– 460,000 hours (≈ 52 years, 6 months) of statistical testing without failure
for 99% confidence

• For SW SIL X: a requirement for pdfh of O(10−6) would require

– 3,000,000 hours (≈ 342 years 5 months) of statistical testing without
failure for 95% confidence

– 4,600,000 hours (≈ 525 years 1 month) of statistical testing without
failure for 99% confidence

Concerning Proposal IV (ii), I have not yet formulated a proposal as to what
evidence is appropriate.

14.5 Applicable Techniques and Recommendations (Annex A)

There is some degree of consensus amongst internationally-recognised experts on
critical software that the current Tables in Annex A are vague. There is also consensus
that merely following the recommendations in the Tables in Annex A does not provide
any demonstrable correlation with either assured properties or assured quality of the
resulting SW. I propose a list of methods which are applied and for which various
tools exist, which is fine-grained enough to enable some properties of the resulting
software to be meaningfully asserted, provided the methods have been appropriately
applied.

Proposal AA-1: Instead of the entries semi-formal methods and formal methods,
including ... in the Tables in Annex A, I propose one single entry, Formal
Methods, to be HR at all SIL levels. In Annex B, I propose a supplementary table
for Formal Methods, to consist of the following entries:

1. Formal functional requirements specification (FRS)

2. Formal FRS analysis

3. Formal safety requirements specification (FSRS)

4. Formal FSRS analysis

5. Automated proving/proof checking of properties (consistency, completen-
ess of certain types) of FRS and FSRS



14.5 Applicable Techniques and Recommendations (Annex A) 315

6. Formal modelling, model checking, and model exploration of FRS, FSRS

7. Formal design specification (FDS)

8. Formal analysis of FDS

9. Automated proving/proof checking of fulfilment of the FRS/ FSRS by FDS

10. Formal modelling, model checking, and model exploration of FDS

11. Formal determininistic static analysis of FDS (information flow, data flow,
possibilities of run-time error)

12. Codevelopment of FDS with ESCL

13. Automated source-code generation from FDS or intermediate specification
(IS)

14. Automated proving/proof checking of fulfilment of FDS by IS

15. Automated verification-condition generation from/with ESCL

16. Rigorous semantics of ESCL

17. Automated ESCL-level proving /proof checking of properties (such as
freedom from susceptibility to certain kinds of run-time error)

18. Automated proving/proof checking of fulfilment of FDS by ESCL

19. Formal test generation from FRS

20. Formal test generation from FSRS

21. Formal test generation from FDS

22. Formal test generation from IS

23. Formal test generation from ESCL

24. Formal coding-standards analysis (SPARK, MISRA C, etc)

25. Worst-Case Execution Time (WCET) analysis

26. Monitor synthesis/runtime verification

Proposal AA-2: It be required in the safety case to state which of these techniques
was applied, which tools were used in that application, and what properties of
the SW were achieved through use of the technique.

Proposal AA-3: It be required in the safety case to demonstrate that the object code
fulfils the FRS.



316 14 Software-Richtlinien für IEC 61508

For (hypothetical) example:

Technique 9, automated proving of fulfilment of FSRS by FDS was undertaken. The
method used was TLA. The FSRS is expressed in Z: the FDS in TLA+. Therefore a
translation of the Z in FSRS into TLA+ was undertaken manually (see accompanying
documentation). The resulting TLA+ specification was shown to be machine-closed.
TLA was used manually to prove refinement of the TLA+ translation of FSRS by FDS.
Since the task involved FSRS only, only proof of refinement of the safety properties
was undertaken. The Merz TLA prover in Isabelle was used to proof-check the manual
proof. Three errors were found (see accompanying documentation), corrected (ditto)
and the correction proof-checked using the Merz prover.


